Appendix 7.2 – Site Investigation Report, 2019

STEPHEN LITTLE & ASSOCIATES MAY 2025

S.I. Ltd Contract No: 5662

Client: Castlethorn

Engineer: Waterman Moylan

Contractor: Site Investigations Ltd

Kellystown, Porterstown, Dublin 15 Site Investigation Report

Prepared by:	
Stephen Letch	

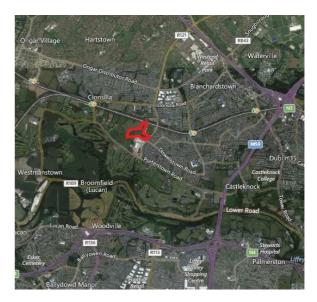
Issue Date:	10/01/2020
Status	Final
Revision	1

Contents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	4
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Borehole and Rotary Corehole Logs and Photographs
- 2. Trial Pit and Dynamic Probe Logs and Photographs
- 3. Soakaway Test Results and Photographs
- 4. Geotechnical Laboratory Test Results
- 5. Environmental Laboratory Test Results
- 6. Survey Data

1. Introduction


On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Kellystown, Porterstown, Dublin 15. The investigation was for a residential development of the site and completed on behalf of the Client, Castlethorn. The investigation was started in November and completed in December 2019.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located in Porterstown, Dublin 15. The first map below shows the location of Porterstown in Dublin, and the second map shows the location of the site in the Porterstown.

3. Fieldwork

The fieldworks comprised a programme of cable percussive boreholes and rotary coreholes, trial pits with dynamic probes, soakaway tests and California Bearing Ratio tests. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. Laboratory testing has been performed on representative soil samples recovered from the trial pits and these were completed in accordance of BS1377: 1990. The fieldworks comprised of the following:

- 4 No. cable percussive boreholes with rotary corehole follow on
- 39 No. trial pits with dynamic probes
- 5 No. soakaway tests
- 25 No. California Bearing Ratio tests

3.1. Cable Percussive Boreholes with Rotary Coreholes

Cable percussion boring was undertaken at 4 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated at depths ranging from 1.60mbgl to 2.70mbgl. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g. BH01 at 1.00mbgl where N=21-(3,4/4,5,6,6)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g. BH01 at 2.70mbgl where N=50-(25 for 5mm/50 for 0mm)).

Following chiselling for one hour, the cable percussion boreholes were removed from the location and the rotary coring rig moved onto the position. The rotary drilling was carried out using a Sondeq SS71 top drive rig. Open hole drilling techniques were used to advance through the overburden and the bedrock was then cored with the corehole terminated when 3m of core was recovered.

Once the coreholes were completed, the rock cores were returned to SIL, where they were logged and photographed by a SIL geotechnical engineer. Provided on the logs are engineering geological descriptions of the rock cores with details of the bedding/discontinuities and mechanical indices for each core run, i.e. TCR, SCR, RQD and Fracture Index.

The borehole and corehole logs are combined and along with the photographs are presented in Appendix 1.

3.2. Trial Pits with Dynamic Probes

39 No. trial pits were excavated using a wheeled excavator. The pits were logged and photographed by SIL geotechnical engineer and representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

Adjacent to the trial pits, dynamic probes were completed using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method

5662 - Kellystown Drogheda, Co. Louth

comprising a 50kg weight, 500mm drop height and a 50mm diameter (90°) cone. The number of blows required to drive the cone each 100mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type

or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

Granular Soils: DPH N₁₀₀ x 2.5 = SPT N value

Cohesive Soils: $C_u = 15 \times DPH N_{100} + 30 \text{ kN/m}^2$

These equations present a relationship between the probe N₁₀₀ value and the SPT N value for granular soils and the undrained shear strength of cohesive soils.

The trial pit logs with the dynamic probe results are presented in Appendix 2 along with the photographs.

3.3. Soakaway Tests

At 5 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. The soakaway test is used to identify possible areas for storm water drainage. The pit was filled with water and the level of the groundwater was recorded over time. As stipulated by BRE Special Digest 365, the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The test results and photographs are provided in Appendix 3.

3.4. California Bearing Ratio tests

At 25 No. individual locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 4

with the geotechnical laboratory test data.

3.5. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 6.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 3 No. Moisture contents
- 3 No. Atterberg limits
- 3 No. Particle size gradings
- 3 No. pH, sulphate and chloride content

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

- 3 No. Rilta Suite analysis
- 3 No. loss on ignition tests

The geotechnical laboratory test results are presented in Appendix 4 with the environmental tests reported in Appendix 5.

5. Ground Conditions

5.1. Overburden

MADE GROUND was encountered in four trial pits to the South East of the site. This extended to 2.10mbgl at TP02, although this terminated on pea gravel at 2.10mbgl and this may be due to a deep underground service in the soils so may be limited to a narrow area. TP03 and TP04 also recorded fill material to 0.95mbgl and 0.60mbgl respectively and to 0.20mgbl at TP05 across the small country road running through the site. The fill material consists of gravelly cobble and boulders overlying cohesive clay soils.

The natural ground conditions are consistent with cohesive soils dominating the site with brown grey overlying black slightly sandy slightly gravelly silty CLAY. The boundary between the CLAYs in the boreholes range from 0.70mbgl to 1.30mbgl but this ranges slightly deeper in the trial pits. The boundary is slightly deeper in the trial pits with it logged from 0.70mbgl (TP19) to 2.70mbgl (TP06) with ten pits not recording the black CLAY.

The SPT N-values are consistent with values ranging from 19 to 21 recorded at 1.00mbgl, increasing to 22 at 2.00mbgl where full tests were completed in BH01 and BH04. The trial pits

also encountered similar cohesive soils and the dynamic probes show a slow increase in blow counts as the probe was advanced into the soils.

The laboratory tests of the cohesive soils confirm that CLAY soils dominate the site with low plasticity indexes of 14 to 16% recorded. The particle size distribution curves were poorly sorted straight-line curves with 28% to 56% fines content.

5.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendix 1 and 2. Groundwater ingresses were recorded in two of the boreholes, BH01 and BH02, at 1.80mbgl and 1.40mbgl respectively. Both holes recorded that the ingresses were sealed off by the casings at 1.90mbgl and 1.60mbgl and suggests that these are small granular lenses with groundwater in the voids. Groundwater was also recorded in eleven of the thirty-nine trial pits during the fieldworks period and ranged in depth from 1.30mbgl to 2.40mbgl, with ingress rates of seepages to rapid ingresses recorded.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

SIL do not recommend that shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement of a building once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then this soil should be removed and replaced with engineered fill.

The boreholes encountered both brown CLAY and black CLAY at 1.00mbgl. The SPT N-values at this depth are good with values ranging from 19 to 22 and the dynamic probe counts would support these higher SPT N-values.

Using a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices, the SPT N-value can be used to calculate the undrained shear strength. With the low to intermediate plasticity indexes recorded in the laboratory for the soils encountered on site, this correlation is C_u=6N. Therefore, using the lower value of 19, this indicates that the undrained shear strength of the CLAY is 114kN/m2. This can be used to calculate the ultimate bearing capacity, and this has been calculated to be 600kN/m². Finally, a factor of safety is applied and with a factor of 3, an allowable bearing capacity of 200kN/m² would be anticipated using the lower SPT values.

A suitably qualified Engineer should inspect the ground at each foundation and confirm that the soils are suitable for the final foundation design.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- All bearing capacity calculations allow for a settlement of 25mm.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However, regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was encountered in two of the boreholes and eleven of the trial pits during the fieldworks period. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress into excavations of the CLAY will be slow. If granular soils are encountered in shallow excavations, then the possibility of water ingressing into an excavation increase.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

The soakaway tests failed the specification as the water level did not fall sufficiently enough to complete the tests. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further

suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e. well compacted clay soils.

6.4. Pavement Design

The CBR test results in Appendix 4 indicate CBR values ranging from 5.8% to 11.6%.

The CBR samples were recovered from 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Contamination

Environmental testing was carried out on three samples from the investigation and the results are shown in Appendix 5. For material to be removed from site, Rilta Suite testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material. The Total Petroleum Hydrocarbon (TPH) result from the TP03 sample did record a level above the limit of detection, but the level was low and not in liquid form so therefore, the sample can be recorded as non-hazardous.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste.

Three samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 4 indicate a general pH value between 7.38 and 7.96, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 123mg/l as SO₃. The BRE Special Digest 1:2005 – 'Concrete in Aggressive Ground' guidelines require SO₄ values and after

conversion (SO₄ = SO₃ x 1.2), the maximum value of 147mg/l shows Class 1 conditions and no special precautions are required.

Appendix 1 Cable Percussive Borehole and Rotary Corehole Logs and Photographs

Contract 5662		Cable Percussion and	Ro	tar	У	Corehole	L	og			ehole 3H0	
Contract:	:	Kellystown	Easti	ng:	7	706066.529	Dat	e Start	ed:	28/11/2	2019	
ocation:	:	Porterstown, Dublin 15	North	ning:	7	737456.859	Dat	e nplete	d:	06/12/2019		
Client:		Castlethorn	Eleva	ation:	6	61.17		ed By		J. O'Toole / ME		MEDL
Engineer	r:	Waterman Moylan	Rig T	уре:		Dando 150 / Sondeq	Stat	us:		FINAL		
Depth (m	n)	Stratum Description	Legend		evel OD)	Samples			Rock	k Indices		Backfil
Scale Dep			\//\\\\/	Scale		th		TCR/%	SCR/%	RQD/%	FI/m	
_ 0.1		DPSOIL. own slightly sandy gravelly silty CLAY.	× ×	61.0	01.0							
0.5												
=				60.5	-							
1.0 - 1.1	10		×	-	60.0	N=21 (3,4/4,5,6,	6)					
= '.'	Sti	iff black slightly sandy gravelly silty CLAY with low cobble ntent.	× × 0	60.0 —	1 00.0	B / 1.00						
1.5		ment.	0 × 0	-]							
-			× 0	59.5 —	1							
2.0			× × ·	=	}	N=22 (3,3/3,6,7,	6)					
-			× × ·	59.0 —		B / 2.00						
2.5	50 Ob	ostruction - weathered bedrock.	0	-	58.6	7						
- 2.7 - 2.8	70 Or	pen hole drilling: Driller reports weathered bedrock.		58.5 —	58.4 58.3) for					-
3.0	Ve	ery strong grey fine grained LIMESTONE. Fresh to slightly pathered.		_]	Onlini)					9	
=		Discontinuities - rough, planar, tight to open, sub-horizontal to 45° dip, clean with occasional staining.		58.0 —	1							
3.5	Γ,	with occasional stanning.		-							Ni	
]			H	57.5 —								
4.0				-]							
3				57.0 —	-	2.80 - 5.80		92	67	48		
4.5					-							
=				56.5 —	1							
5.0				-							6	
3				56.0 —								
5.5				-								
5.8	30			55.5 —	55.3	7						
6.0		End of Corehole at 5.80m		-	1							
3				55.0 —								
6.5				-								
3				54.5	}							
7.0				-	1							
3				54.0 —	-							
7.5				-								
=				53.5]							
8.0				-	1							
				53.0]							
8.5				-	1							
=				52.5]							
9.0				-								
=				52.0	1							
9.5				-	1							
=				51.5	1							
			-	-	1_							
		Chiselling: Water Strikes: Water Details:	Ineta	allation	s.	Backfill:		Rema	ırke.	1.	egend:	
(A)	1					From: To: Type: -		1 (01116		— В	: Bulk : Distur	bed
(\$1		2.50 2.70 01:00 1.80 1.75 1.9 28/11 2.70 Dry			-	0.00 5.80 Arisings				U	: Undis	
	. /										/: Wate	

	ract N 662	Cable Percussion and	Corehole	L	og			ehole 3H0						
Contr	act:	Kellystown	Easti	ng:	7	06041.742	Date	e Star	ted:	27/11/2	2019			
Locat	ion:	Porterstown, Dublin 15	North	ning:	7	737508.553 Date Completed:						06/12/2019		
Client	t:	Castlethorn	Eleva	ation:	6	61.27	Drill	led By	: ,	J. O'Toole /		MEDL		
Engin	eer:	Waterman Moylan	Rig T	уре:		Dando 150 / Bondeq	Stat	tus:	ı	FINAL				
Dept	. ,	Stratum Description	Legend		evel OD)	Samples			Rock	Indices		Backfill		
Scale	Depth 0.10	TOPSOIL.	\(\lambda\)	Scale		th		TCR/%	SCR/%	RQD/%	FI/m	X//XX//X		
0.5	0.10	Brown slightly sandy gravelly silty CLAY.		61.0 —										
1.0	0.70	Stiff black slightly sandy gravelly silty CLAY with low cobble content.	8 × 0	60.5	60.5	N=19 (3,4/4,5,5,	5)							
-			× × ·	60.0		B / 1.00								
1.5 —	1.50 1.70	Obstruction - boulder.	0 0	-	59.7° 59.5°) for							
2.0		Open hole drilling: Driller reports sandy gravelly clay.	× × ·	59.5 —		` 0mm)								
_	2.20	Core run attempted - poor recovery - returns of dark grey	×.	59.0 —	59.0	7								
2.5 —		MUDSTONE.												
20				58.5 —		2.20 - 3.80		62	3	0				
3.0 —				58.0 —		2.20 - 3.60		63	3	0				
3.5 —				-										
4.0		weathering state. Discontinuities - rough, planar, tight to open, sub-horizontal dip, clean with		57.5 — - - -	57.4	7					Ni 15 Ni			
		Discontinuities - rough, planar, tight to open, sub-honzontal dip, clean with occasional staining.		57.0 —							INI			
4.5 —				56.5										
5.0 —				50.5										
_				56.0 —		3.80 - 6.80		91	85	65				
5.5											5			
-				55.5										
6.0 —														
6.5 —				55.0 —										
_	6.80			54.5	54.4	7								
7.0	0.00	End of Corehole at 6.80m		-										
- - -				54.0										
7.5 —														
8.0 —				53.5 —										
_ _ _				53.0										
8.5				=										
-				52.5 —										
9.0				52.0 —										
9.5 —				-										
=				51.5										
				_										
	Also I	Chiselling: Water Strikes: Water Details:		allation		Backfill:		Rema	arks:	——В	egend: : Bulk			
		From: To: Time: Strike: Rose: Sealed: Date: Hole Depth: Depth: F D	rom:	To: F	Pipe:	From: To: Type: - 0.00 6.80 Arisings				U	b: Distur l: Undist S: Envii V: Water	turbed ronmental		

	ract N 662	Cable Percussion and	Ro	tar	у	Corehole	L	og			rehole BH0	
Contra	act:	Kellystown	Easti	ng:	-	705739.563	Dat	e Star	ted:	25/11/	2019	
Locat	ion:	Porterstown, Dublin 15	North	ning:		737540.229	Dat Cor	e nplete	d:	09/12/	2019	
Client	:	Castlethorn	Eleva	ation:	(60.73	Dril	led By	:	J. O'To	oole /	MEDL
Engin	eer:	Waterman Moylan	Rig T	уре:		Dando 150 / Sondeq	Sta	tus:		FINAL		
Deptl		Stratum Description	Leve) Samples				Indice		Backfill
Scale -		TOPSOIL.			Dep			TCR/%	SCR/9	% RQD/%	FI/m	
0.5	0.20	Brown slightly sandy gravelly silty CLAY.	×	60.5 -	60.5	3						
1.0		Stiff black slightly sandy gravelly silty CLAY with low cobble content.	X	60.0 —	59.9	N=17 (3,3/4,4,4	,5)					
-			~ × ×	59.5 -		B / 1.00						
1.5 —	1.50 1.60	Obstruction - boulder. Open hole drilling: Driller reports sandy gravelly clay.	0 0 ×.	59.0 —	59.2 59.1	3 50 (25 for 5mm/5 0mm)	0 for					
2.0			0 ×			Ommi)						
			0 × 0	58.5 -								
2.5 —			0 0 X	58.0 —]							
3.0			0 × 0	56.0	3							
=			× × ×	57.5	1							
3.5			200 X									
			0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	57.0 —	╡							
4.0	4.00	Strong to very strong dark grey calcareous MUDSTONE. Fresh weathering state.		56.5	56.7	3					Ni	-
4.5		Discontinuities - rough, planar, tight to open, sub-horizontal dip, clean with occasional staining.									13	-
				56.0 —	1						7	-
5.0					1						10	
5.5				55.5		4.00 - 7.00		100	85	60		-
5.5				55.0 —		4.00 - 7.00		100	00	00		
6.0]							
				54.5	7						6	
6.5				540	=							
7.0	7.00			54.0 —	53.7	3						
		End of Corehole at 7.00m		53.5 -	}							
7.5												
				53.0 —								
8.0 —				52.5 -								
8.5												
]				52.0 —	1							
9.0												
9.5				51.5 -	3							
9.5				51.0 —	-							
\vdash					-						_	-
		Chiselling: Water Strikes: Water Details:		allation		Backfill:		Rema	arks:		_ Legend: B: Bulk	
		From: To: Time: Strike: Rose: Sealed: Date: Hole Depth: Water Depth: F 1.50 1.60 01:00 25/11 1.60 Dry	rom:	To:	Pipe:	From: To: Type: - 0.00 7.00 Arisings	-				D: Distur U: Undis	turbed ronmental

	ract N 662	Cable Percussion and	Ro	tar	У	Corehole	L	og			ehole 3H0	
Contra	act:	Kellystown	Easti	ing:	7	705975.213	Dat	e Star	ted:	25/11/2	2019	
ocati	ion:	Porterstown, Dublin 15	North	ning:	7	737597.506	Dat	e nplete	q.	09/12/2019		
lient	t:	Castlethorn	Eleva	ation:	6	60.78		led By		J. O'To	ole / N	ИEDI
ngin	eer:	Waterman Moylan	Rig T	Гуре:		Dando 150 /	Stat	tus:		FINAL		
Depth	h (m)	Ctratum Description		Le	vel OD)	Sondeq			Rock	Indices	i	Book
cale	Depth	Stratum Description TOPSOIL.	Legend	Scale		Samples th	TCR/% SCR/			% RQD/%	FI/m	Back
).5 — - -	0.20	Firm brown slightly sandy gravelly silty CLAY.	X - X - X - X - X - X - X - X - X - X	60.5	60.5	8						
.0 -	1.30	Stiff black slightly sandy gravelly silty CLAY with low cobble	X X X	59.5	59.4	N=14 (3,3/3,4,3, B / 1.00	4)					
.5 -		content.	0 × 0 × 0 ×	59.0								
2.0 -			0 ×	58.5		N=16 (3,3/3,4,4,4,8 B / 2.00	5)					
2.5 -	2.60 2.70 2.80	Obstruction - weathered bedrock. Open hole drilling: Driller reports weathered bedrock.		58.0	58.1 58.0 57.9	8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) for				Ni	
.0 -	2.00	Discontinuities - rough, planar, tight to open, sub-horizontal dip, clean with occasional staining. Try strong grey fine grained LIMESTONE. Fresh to slightly eathered.					11					
i.5 — — —		weathered.		57.0							20	
-0.				56.5		2.70 - 5.70		100	83	24		
.5 — - - -				56.0							11	
.0 —				55.5								
.5 — - -	5.80	End of Corehole at 5.70m		55.0	54.9	8						
.0 _				54.5 —								
.5 -				54.0								
.0 _				53.5								
.5 -				53.0								
.0				52.5								
.5 -				52.0								
0.0				51.5 —								
9.5				51.0 —								
		Chiselling: Water Strikes: Water Details:		allation		Backfill:		Rema	arks:	В	egend: : Bulk	
		From: To: Time: Strike: Rose: Sealed: Date: Date: Depth: Organic	From:	To: I	-ipe:	From: To: Type: - 0.00 5.70 Arisings -				U	: Disturb : Undisto S: Environ/: Water	urbed onmer

RC01 Box 1 of 1

RC02 Box 1 of 2

RC02 Box 2 of 2

RC03 Box 1 of 1

RC04 Box 1 of 1

Appendix 2 Trial Pit and Dynamic Probe Logs and Photographs

	ict No: 662	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit 1			
Contra	ict:	Kellystown	Easting	:	706061.	699	Date:	27/11/2019			
Location	on:	Porterstown, Dublin 15	Northin	g:	737437.	955	Excavator:	JCB 3CX			
Client:		Castlethorn	Elevation	n:	61.21		Logged By:	M. Kaliski			
Engine	eer:	Waterman Moylan	Dimens (LxWxD		4.00 x 0	0.40 x 2.40	Scale:	1:25			
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sample	es	Probe	Wate		
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Type 1		Strik		
1.5	1.20	Stiff brown grey slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.40m		61.0 - 61.0 - 60.5 60.0 - 60.5 59.5 59.0 - 57.5 57.0 - 56.5	- 61.11 - 60.01 - 58.81 	0.50	B 9	0 12 18 24 17 21 15 14 27 35			
	10	Termination: Pit Wall Stability: Groundwate	r Rate:	Remarl	ks:	<u> </u>	Key:				
(8		Obstruction - Pit walls stable. Dry possible boulders or bedrock.	,	-			D = Sr CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	l		

Contra 56	ct No: 62	Trial Pit and I	Dynan	nic	Pr	obe	Log			Trial Pit TP0	
Contra	ct:	Kellystown	Ea	sting:		706091.	521	Date	:	27/11/2019	
Locatio	on:	Porterstown, Dublin 15	No	rthing:		737509.2	203	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Ele	evation	:	61.26		Logg	jed By:	M. Kaliski	
Engine	er:	Waterman Moylan		mensic «WxD)		3.80 x 0).40 x 2.10	Scal	e:	1:25	
Level	(mbgl)	Stratum Description		egend		(mOD)	Sampl	es		Probe	Wate
Scale:	Depth	MADE GROUND: grey gravelly cobbles and	20	yonu -	Scale	Depth:	Depth	Туре	1	1 1050	Strike
-		boulders.				-			4		
-	0.30	MADE GROUND: black slightly sandy gravell clay with high cobble and low boulder content			61.0 -	60.96			8	1 14	
0.5 -		some rags.							6 7		
-	0.80	MADE GROUND: black slightly sandy gravell	ly silty		60.5	60.46			4	13	
1.0		clay with high cobble and low boulder content				_	1.00	В	5		
-					60.0 -	-			7	13	
-						-			5 8		
1.5 – -									5 7		
-					59.5					14	
2.0 —						-	2.00	В		35	5
-	2.10	MADE GROUND: grey fine to medium gravel. Pit terminated at 2.10m		*******	50.0	59.16					
-					59.0 –	-					
2.5 -						-					
-					58.5						
3.0 —						-					
3.0						-					
-					58.0 -						
3.5 -											
-					57.5 ·						
-					57.5	-					
4.0 —						-					
-					57.0 -						
4.5 -											
-											
-					56.5	1					
						-					
		· ·	undwater Ra		emarl				Key:		
		Obstruction - Minor collapse of pit walls.	Dry				10mbgl - ng service.		D = Sn CBR = U	llk disturbed nall disturbed ndisturbed CBR vironmental	2

Contra 56	ct No: 662	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit I					
Contra	ct:	Kellystown	Easting		705998.	201	Date:	27/11/2019					
Locatio	on:	Porterstown, Dublin 15	Northing	j :	737457.	656	Excavator:	JCB 3CX					
Client:		Castlethorn	Elevatio	n:	62.19		Logged By:	M. Kaliski					
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.80 x 0	0.40 x 3.00	Scale:	1:25					
Level	(mbgl)	Stratum Description	Legend	1 , , ,	I (mOD)	Sample	es	Probe	Wate				
Scale:	0.95	MADE GROUND: brown slightly sandy gravelly silty clay with high cobble and low boulder content with some red brick and tarmacadam fragments. Stiff brown grey slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Pit terminated at 3.00m		61.5 - 61.0 - 59.5 - 59.0 - 58.5 - 58.0 -	61.24		B 8	12	Strike				
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	r Rate: I	57.5 Remarl	 ks:			ulk disturbed mall disturbed					

Contract 56	ct No: 62	Trial Pit and D	obe	Log		Trial Pi			
Contra	ct:	Kellystown	Easting	j:	706028.	269	Date:	27/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northin	g:	737511.	536	Excavat	tor: JCB 3CX	
Client:		Castlethorn	Elevati	on:	61.25		Logged	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxI		4.20 x (0.40 x 2.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legen	Leve	el (mOD)	Sample	es	Probe	Water
Scale:	Depth	TOPSOIL.	W/XW/X	Scale	e: Depth:	Depth	Гуре		Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 — 4.5 —	0.60	MADE GROUND: grey gravelly cobbles and boulders. MADE GROUND: grey slightly sandy gravelly siclay with high cobble and medium boulder contects. Stiff brown grey slightly sandy gravelly silty CLA high cobble content. Sand is fine to coarse. Grafine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Obstruction - possible boulders or bedrock. Pit terminated at 2.10m	Y with 2 - 2 vel is	61.0 · 61.0 · 60.5 · 60.5 · 60.0 · 60	- 61.10 - 60.65 - 60.65 - 59.15	0.50	B B	19 18 15 12 25 14 8 7 10 17 14 9 6 16 18 11 25	5
		Termination: Pit Wall Stability: Ground	dwater Rate:	Remar	·ks:		Key	y:	
			Dry	-			B = D = CBF	Bulk disturbed	₹

Contra 56		Tr	ial Pit an	d Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown			Easting:		705949.8	850	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 1	5		Northing):	737466.0	642	Excava	tor:	JCB 3CX	
Client:		Castlethorn			Elevatio	n:	61.89		Logged	Ву:	M. Kaliski	
Engine	er:	Waterman Moylan			Dimensi (LxWxD		4.00 x 0).40 x 2.60	Scale:		1:25	
Level	(mbgl)	Strat	um Description		Legend	Leve	l (mOD)	Sample		F	Probe	Water Strike
Scale:	Depth	TOPSOIL.				Scale	: Depth:	Depth	Туре	2		Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 —	1.10 1.90 2.60	MADE GROUND: grey boulders. TOPSOIL. Firm brown slightly sar cobble content. Sand it to coarse, subangular Cobbles are angular to Stiff brown grey slightly medium cobble conter Gravel is fine to coarse limestone. Cobbles are limestone. Very stiff black slightly high cobble and low be coarse. Gravel is fine subrounded of limesto angular to subangular diameter).	ndy gravelly silty C is fine to coarse. G to subrounded of lo subangular of lime. Ty sandy gravelly silt is an angular to subangular content. Sa to coarse, subangular cobbles and be of limestone (up to	CLAY with low Gravel is fine limestone. Intestone. Intestone. Intestone. Intestone intestone. Intestone in		61.5 61.0 - 60.5 59.5 59.0 -		1.00	ВВВ	12 10 7 4 3 4 3 3 4 7 7 10 8 9 9	e.	•
4.5 —						57.5 57.0 -	-					
		Termination:	Pit Wall Stability:	Groundwate	r Rate: F	Remar	ks:		Ke	V:		
			Pit walls stable.	1.70 Seepa					B = D = CB	Bulk Sma	disturbed all disturbed disturbed CBR conmental	

Contra 56	ct No: 62	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Kellystown	Easting:		705968.	854	Date:	28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	:	737523.	898	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	า:	61.89		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimension (LxWxD)		3.90 x 0	0.40 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Sampl	es	Probe	Wate
Scale:	Depth	TOPSOIL.	Logona	Scale	: Depth:	Depth	Туре	11000	Strik
1.5 — 2.0 — 2.5 — 3.0 —	0.20 0.80	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are		61.5 - 61.0 - 60.0 - 59.5 - 59.0 -	- 61.69 - 61.09 - 61.09 - 59.19 - 58.89	0.50 0.50 1.50	В		
-		angular to subangular of limestone (up to 400mm diameter). Pit terminated at 3.00m		58.5	- - -				
3.5 —				58.0 -	- - -				
4.0					- - -				
4.5 — - - -				57.5 ·	- - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remarl	ks:		Key:		
		Scheduled depth. Pit walls stable. Dry	-				B = B D = S CBR = U	ulk disturbed mall disturbed Jndisturbed CBR wironmental	!

Contra	ct No:	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Kellystown	Easting	:	705980.	829	Date:	28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	g:	737566.	711	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	61.11		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.90 x (0.40 x 2.50	Scale:	1:25	
	(mbgl)	Stratum Description	Legend	l	I (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	+ -	Depth ⁻	Type 1		Strike
0.5 —	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff brown grey slightly sandy gravelly silty CLAY with		61.0 -	- 60.91 60.41		2 3 7 9 5 4 4		
1.0 —		medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		60.0 -	- - - - -	1.00	B 5 5 6 5 6 5 6		
1.5 —				59.5	- - - -		5 8 9	14	
2.5 —	2.40 2.50	Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm		59.0 -		2.50	В	26 35	
3.0 —		diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.50m		58.0 -					
3.5 —				57.5	- - -				
4.0 —				57.0 -	- - - -				
4.5				56.5	- - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate:	⊥ Remarl	ks:		Key:		
		Obstruction - Pit walls stable. Dry possible boulders or bedrock.	•	-			D = Si CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	

Contract 56		Trial Pit and	Dyna	mic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown		Easting:		705961.	176	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15		Northing	j :	737541.0	093	Exca	vator:	JCB 3CX	
Client:		Castlethorn		Elevatio	n:	61.65		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		Dimensi (LxWxD		4.00 x 0).40 x 2.60	Scale):	1:25	
Level	• • •	Stratum Description		Legend		I (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.			Scale	: Depth:	Depth -	Гуре	1		Strike
1.5 — 1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 —	0.40	Firm brown slightly sandy gravelly silty CLA cobble content. Sand is fine to coarse. Gra to coarse, subangular to subrounded of lime Cobbles are angular to subangular of limes Stiff brown grey slightly sandy gravelly silty medium cobble content. Sand is fine to coarsel is fine to coarse, subangular to subangulimestone. Cobbles are angular to subangulimestone. Stiff brown grey slightly sandy gravelly silty high cobble and low boulder content. Sand coarse. Gravel is fine to coarse, subangula subrounded of limestone. Cobbles and bou angular to subangular of limestone (up to 4 diameter). Very stiff brown grey slightly sandy gravelly with high cobble and boulder content. Sand coarse. Gravel is fine to coarse, subangula subrounded of limestone. Cobbles and bou angular to subangular of limestone (up to 4 diameter). Obstruction - possible boulders or bedrock Pit terminated at 2.60m	vel is fine estone. Stone. CLAY with arse. rounded of alar of CLAY with is fine to a rounders are comm		61.5 - 61.0 - 60.0 - 60.0 - 59.5 - 59.5 - 57.5 - 57.5 - 57.5 - 57.5 - 57.5 - 60.0 - 60	61.45 61.25 60.75 60.75 59.85	2.00	В		ı	
		Termination: Pit Wall Stability: G	Groundwater	Rate:	Remarl	- - - ks:		ŀ	(ey:		
		Obstruction - possible boulders or bedrock.	Dry	-				E C	B = Bul D = Sm CBR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contra	ct No: 662	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Kellystown	Easting		705958.	291	Date:	26/11/2019	
Location	on:	Porterstown, Dublin 15	Northing	j :	737510.	084	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevatio	n:	61.74		Logged By	: M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		4.20 x (0.40 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	1	(mOD)	Sample	es	Probe	Water
Scale:	Depth	TOPSOIL.		Scale	Depth:	Depth ⁻	Гуре 1		Strike
- 0.5 -	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		61.5 -	61.54	0.50	2 3 2 2 2 2		
1.0	0.00	Stiff brown grey slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		61.0 -	- 01.14 		3	13 11 10 11	
- - 1.5 —				60.5	- - - -	1.50	В	15 19 24 28 32	
2.0 —	1.70	Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter).		60.0 -	60.04			35	
- 2.5 — -				59.5 -	- - -				
3.0 —	3.00	Pit terminated at 3.00m		39.0	58.74	3.00	В		
3.5 —				58.5	- - -				
4.0 —				58.0 -					
- - -				57.5 -					
4.5 — - - -				57.0 –	- - - -				
		Termination: Pit Wall Stability: Groundwater	Rate: I	Remark	(S:		Key:		
		Scheduled depth. Pit walls stable. Dry	-				B = 1 D = 3 CBR =	Bulk disturbed Small disturbed Undisturbed CBR nvironmental	

Contra 56	ict No: 662	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ıct:	Kellystown	Easting	:	705952.	670	Date:	28/11/2019	
Locatio	on:	Porterstown, Dublin 15	Northin	g:	737577.	442	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	60.65		Logged By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxE		3.90 x (0.40 x 2.70	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	I (mOD)	Sample	es	Probe	Wate
Scale:	Depth	TOPSOIL.	209011	Scale	: Depth:	Depth	Гуре		Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	2.70	Firm brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.70m		60.5 60.5 60.0 59.5 59.0 57.5 57.0 56.5	59.55 59.55 59.55	2.00	B B B B B B B B B B B B B B B B B B B	16 20 23 19 16 35	
4.5 — - - - -				56.0 -	- - - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate:	 Remarl	ks:		Key:		
		Obstruction - possible boulders or bedrock. Pit walls stable. Dry		-			B = Bi D = Si CBR = U	ulk disturbed mall disturbed Jndisturbed CBR vironmental	R

Contract 56		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contrac	ct:	Kellystown	Easting:		705931.	128	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	j:	737482.0	664	Excava	tor:	JCB 3CX	
Client:		Castlethorn	Elevatio	n:	61.88		Logged	I Ву:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		4.20 x 0	0.40 x 3.00	Scale:		1:25	
Level		Stratum Description	Legend		l (mOD)	Sample			Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth ⁻	Гуре			Strike
0.5 —	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		61.5	- 61.68 			3 3 3 2 3		
1.0 —		Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of		61.0 -	60.98	1.00	В	3 3 5 9 9		
1.5 —		limestone.		60.5	-			8 11 10 7	23	
2.0 —		Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter).		59.5	- 59.88 	2.50	В		31 35	
3.0 —	3.00	Pit terminated at 3.00m		59.0 -	- - - 58.88					
3.5 —				58.5	_ - -					
4.0 —				58.0 -	- - -					
4.5 —				57.5	- - -					
-				57.0 -	_					
1		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:		Ke	y:		
		Scheduled depth. Pit walls stable. Dry	-					Sma R = Un	c disturbed all disturbed disturbed CBR ronmental	

Contract 56		Trial Pit and Dyn	amic	: Pr	obe	Log			Trial Pit I	
Contrac	ct:	Kellystown	Easting		705839.	339	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northin	g:	737497.	150	Exca	/ator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	61.58		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		4.00 x 0	0.40 x 3.00	Scale	:	1:25	
Level		Stratum Description	Legend		el (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale		Depth ⁻	Туре	1		Otrike
0.5 —	0.70	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		61.0	61.38			2 2 3 2 3		
1.0		Stiff becoming very stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to		60.5	60.88	1.00	В	3 4 2 4		
-		subangular of limestone.		00.5				5 4 8 8		
1.5 — - - -				60.0				6 5 4		
2.0 —				59.5				6 8 8	2	•
2.5 —				59.0	- - -	2.50	В		17 25 35	
3.0 —	3.00	Pit terminated at 3.00m		58.5	58.58					
3.5 —				58.0						
4.0 —				57.5	- - - -					
4.5 —				57.0						
-					_					
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remar	·ks:		K	Сеу:		
		Scheduled depth. Pit walls stable. 2.30 Mediu		-			B D	s = Bul 0 = Sm 3BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contra 56	ict No: 662	Trial Pit and Dyn	amio	Pr	obe	Log		Trial Pit	
Contra	ıct:	Kellystown	Easting	:	705899.	897	Date:	29/11/2019	
Locatio	on:	Porterstown, Dublin 15	Northin	g:	737517.	227	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	on:	62.50		Logged By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWx[3.80 x (0.40 x 2.50	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sample	es	Probe	Wate
Scale:	Depth	TOPSOIL.	Logonia	Scale	: Depth:	Depth	Гуре		Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	1.30	Stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff brown grey slightly sandy gravelly silty CLA with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm tiameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.50m		62.0 - 62.0 - 61.5 61.0 - 60.5 60.5 59.5 59.0 - 58.5	- 62.30 - 62.30 - 61.20 - 60.40 - 60.00	2.00		0 0 0 28 26 17 15 19 24 29 35	
4.5 — - - -				58.0 -	_ _ _ _ _				
		Termination: Pit Wall Stability: Groundwat	er Rate:	Remar	ks:		Key:		
		Obstruction - possible boulders or bedrock. Pit walls stable. Dry	oi itate.	-			B = Bu D = Sr CBR = U	ulk disturbed mall disturbed ndisturbed CBR vironmental	

Contraction 56	ct No: 62	Trial Pi	t and Dyn	amic	: Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown		Easting	:	705910.	723	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15		Northin	g:	737547.	182	Excav	ator:	JCB 3CX	
Client:		Castlethorn		Elevation	n:	61.69		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan		Dimens (LxWxD		4.00 x (0.40 x 2.40	Scale:		1:25	
Level		Stratum Descri	iption	Legend	l	l (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.			Scale	e: Depth:	Depth	Туре)		Strike
0.5 —		Firm brown slightly sandy gravel cobble content. Sand is fine to c to coarse, subangular to subrour Cobbles are angular to subangu	oarse. Gravel is fine nded of limestone.	N	61.5	- - - - - - - - -			2 2 3 3 3 3 3		
1.0 —		Stiff brown grey slightly sandy gredium cobble content. Sand is Gravel is fine to coarse, subangulimestone. Cobbles are angular is	fine to coarse. ular to subrounded c	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60.5	- - - - - - -	1.00	В	8 8 6 5 3		
1.5 — - - -		limestone.	to outraingular of		60.0	- - - -	1.50	В	3 3 3 3		
2.0 —	2.40			8 0 X 8 0 X 8 0 X 8 0 X	59.5	_ _ _ _ _ _ 59.29			5 7 1	2	
2.5 —		Obstruction - boulders. Pit terminated at 2	2.40m		59.0 -	- - - - -				18 29 35	
- - -					58.5	- - -					
3.5 —					58.0 -						
4.0 —					57.5	- - -					
4.5 —					57.0 -	- - - -					
		Termination: Pit Wall Sta	ability: Groundwa	ter Rate:	l Remar	ks:		K	ey:		
		Obstruction - Pit walls start possible boulders or bedrock.			-			B D CI	= Bul = Sm BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contraction 56		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Easting:		705887.	712	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	j :	737549.	128	Excava	ator:	JCB 3CX	
Client:		Castlethorn	Elevatio	n:	61.82		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		4.00 x 0	0.40 x 3.00	Scale:		1:25	
Level		Stratum Description	Legend		l (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth ⁻	Гуре)		Strike
1.5 —	1.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Firm becoming stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		61.0 -	- 61.62 - 61.62 	0.50 0.50	B ES	1 2 2 2 1 1 2 2 2 2 3 3 5 6 3 3 3 3 3 4 4 6 6		
2.5 —	3.00	Pit terminated at 3.00m		59.5 59.0 -	58.82			8 112	2 14 16 16 29 35	
3.5 —				58.5	_ _ _ _					
4.0 —				57.5						
4.5 —				57.0 -	- - - -					
		Termination: Pit Wall Stability: Groundwate	r Poto:	Remar	ke:		1/2	2W:		
		Scheduled depth. Pit walls stable. Dry	rate: F	veiliar	NS.		B D CE	= Sm 3R = Un	k disturbed all disturbed disturbed CBR ronmental	

Contra 56	ct No:	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Easting:		705820.	103	Date	:	29/11/2019	
_ocatio	on:	Porterstown, Dublin 15	Northing		737528.	588	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Elevation	1:	60.96		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensio (LxWxD)		4.20 x (0.40 x 3.00	Scale	e:	1:25	
Level	(mbgl)	Stratum Description	Legend	. ,	l (mOD)	Sample	es		Probe	Wate
Scale:	Depth	TOPSOIL.	Legend	Scale	: Depth:	Depth	Туре		TTODE	Strike
1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	0.80	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Pit terminated at 3.00m		60.5 60.0 - 59.5 59.0 - 58.5 57.5	- 60.76 - 60.16 - 59.26 - 57.96	2.00	В	3 2 2 2 2 2 3 3 3 3 5 5 5 6 6 6 9 8 1	1 16 24 35	
4.5 — - - - -				56.0 -	-					
		Termination: Pit Wall Stability: Groundwate	r Rate:	emar	ks:		ŀ	Key:		
		Scheduled depth. Pit walls stable. Dry	-					0 = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 56		Trial Pit and Dyi	namic	: Pr	obe	Log			Trial Pit	
Contrac	ct:	Kellystown	Easting	:	705784.	809	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northin	g:	737511.4	471	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	60.74		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.90 x (0.40 x 3.00	Scale	:	1:25	
Level		Stratum Description	Legend		el (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Туре	1		Stilke
0.5 —		Firm becoming stiff brown grey slightly sandy grave silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.	Sily	60.5	60.54			2 2 3 3 2 4		
1.0 —				59.5		1.00	В	8 7	1 14 19 21	
1.5 —				59.0	- - - -			6 7 1	2 19 21	
2.0 —				58.5	- - - -				29 35	•
2.5 —	3.00	Pit terminated at 3.00m		58.0		2.50	В			
3.5 —		Tit terminated at 6.00m		57.5	- - - -					
-				57.0	- - -					
4.0 —				56.5	- - - -					
4.5 —				56.0						
		Termination: Pit Wall Stability: Groundwa	ater Rate:	Remar	ks:		k	ćеу:		
		Scheduled depth. Minor collapse of pit walls. 2.10 Slov		-			E C	B = Bu D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contra	ict No: 662	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ıct:	Kellystown	Easting	:	705790.	803	Date:	29/11/2019	
Location	on:	Porterstown, Dublin 15	Northing	g:	737540.	254	Excavator:	: JCB 3CX	
Client:		Castlethorn	Elevation	n:	60.67		Logged By	/: M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		4.00 x 0	0.40 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es	Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Гуре		Strike
1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Firm brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff becoming very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter).		60.0 - 59.5 - 59.0 - 57.0 - 56.5 -	59.77	1.00	В	10 8 9 8 15 14 19 24 27 32 35	
4.5 — - - -				56.0 -	- - - - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate:	l Remarl	KS:		Key:		
		Scheduled depth. Pit walls stable. Dry	•				D = CBR =	Bulk disturbed Small disturbed Undisturbed CBR Environmental	

Contraction 56	ct No:	Trial Pit and Dyn	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Easting:		705762.	342	Date:		26/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	j :	737532.	911	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Elevatio	n:	60.95		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		4.00 x 0	0.40 x 3.00	Scale	:	1:25	
	(mbgl)	Stratum Description	Legend		l (mOD)	Sample			Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth	Гуре	1		Strike
0.5 —	0.50	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		60.5	- 60.75 - 60.45			1 2 3 2 3		
-	0.70	Firm brown grey slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of			60.25			3		
1.0 —		limestone. Cobbles are angular to subangular of limestone. Stiff becoming very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up		60.0 -	- - - -	1.00	В	3 2 3 4 5		
1.5 —		to 400mm diameter).		59.5	_ - - -			5 5 6 8		
2.0 —				59.0 -	- - -	2.00	В	8 7 8 9	2	
2.5 —				58.5	- - -	2.80	В	11	14 25 35	•
3.0 —	3.00	Pit terminated at 3.00m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58.0	57.95	2.00	Б			
3.5 —				57.5	- - - -					
4.0 —				57.0 -	_ _ _ _					
-				56.5	_ _ _ _					
4.5 — — —										
				56.0						
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. 2.40 Mediu		Remar	ks:		В		k disturbed	
6							C	BR = Ur	nall disturbed ndisturbed CBR ronmental	

Contraction 56		Trial Pit and	Dynan	nic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Ea	sting:		705715.	182	Date	:	26/11/2019	
Locatio	n:	Porterstown, Dublin 15	No	orthing:		737540.0	018	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Ele	evation:	(60.24		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		mensior xWxD) (4.10 x 0	0.40 x 1.50	Scale	e:	1:25	
Level		Stratum Description	Le	egena 🗀		(mOD)	Sampl			Probe	Water
Scale:	Depth	TOPSOIL.			Scale:	Depth:	Depth	Туре	2		Strike
0.5 —	0.90	Firm light brown slightly sandy gravelly silty C with medium cobble content. Sand is fine to c Gravel is fine to coarse, subangular to subangula limestone. Cobbles are angular to subangula limestone. Stiff brown grey slightly sandy gravelly silty C high cobble and low boulder content. Sand is	coarse. unded of a far of CLAY with s fine to		60.0 —	59.94	1.00	В	2 3 2 3 4 3 3 5 6 4		
1.5 —	1.50	coarse. Gravel is fine to coarse, subangular t subrounded of limestone. Cobbles and bould angular to subangular of limestone (up to 400 diameter). Obstruction - possible boulders or bedrock.	ders are 🚟 🖰		59.0 —	58.74			9	17 35	
- - -		Pit terminated at 1.50m			58.5 -	-					
2.0 —					- 58.0 -	-					
2.5 —					57.5 -	-					
3.0 —						- - - -					
3.5 —					57.0 —						
4.0—					56.5 -	-					
-					56.0 —	-					
4.5 — — — —					55.5 -						
		Termination: Pit Wall Stability: Gro	oundwater Ra	ate: Re	mark	is:		-	Key:		
		Obstruction - Pit walls stable. possible boulders or bedrock.	Dry	-				E [3 = Bul 0 = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 56		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contrac	ct:	Kellystown	Easting:		705801.	936	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	j :	737607.	409	Exca	/ator:	JCB 3CX	
Client:		Castlethorn	Elevatio	n:	60.20		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		4.00 x 0	0.40 x 3.00	Scale	:	1:25	
Level		Stratum Description	Legend		l (mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth ⁻	Гуре	0		Strike
0.5 —	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		60.0 -	- - - - - - -			1 2 2 3 3 3 3 3		
1.0 —		Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		59.0	- - 59.30 - - -	1.00	В	3 3 5 4 6		
1.5 —	1.50	Very black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm		58.5	- 58.70 			7	2 17 23	•
2.0 —		diameter).		58.0 -	- - - -	2.00	В			
3.0	3.00			57.5	- - - - - 57.20					
-	0.00	Pit terminated at 3.00m		57.0 -	-					
3.5 —				56.5	- - -					
4.0 —				56.0 -	- - -					
4.5 —										
-				55.5						
		Termination: Pit Wall Stability: Groundwate	r Rate: I	Remar	ks:	<u> </u>	K	ley:		
		Scheduled depth. Pit walls stable. 1.60 Mediu	m -	,			C) = Sm :BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 56		Trial Pit and	l Dyna	mic	Pr	obe	Log			Trial Pit I	
Contrac	ct:	Kellystown		Easting:		705824.	790	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15		Northing	:	737570.4	436	Excav	ator:	JCB 3CX	
Client:		Castlethorn		Elevation	ո։	60.22		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		Dimensio (LxWxD)		3.90 x 0	0.40 x 2.50	Scale:	:	1:25	
Level		Stratum Description		Legend		I (mOD)	Sample			Probe	Water
Scale:	Depth	TOPSOIL.			Scale	: Depth:	Depth ⁻	Гуре	n		Strike
0.5 —	0.20	Firm brown slightly sandy gravelly silty CLz cobble content. Sand is fine to coarse. Gra to coarse, subangular to subrounded of lim Cobbles are angular to subangular of limes	avel is fine nestone.		60.0 -	60.02			1 1 1 2 3		
1.0 —		Firm brown grey slightly sandy gravelly silt with medium cobble content. Sand is fine t Gravel is fine to coarse, subangular to sub limestone. Cobbles are angular to subangulimestone.	o coarse. rounded of		59.0 -	_ 59.42	1.00	B -	2 2 2 2 2		
1.5 —		Very stiff black slightly sandy gravelly silty high cobble and low boulder content. Sand coarse. Gravel is fine to coarse, subangula subrounded of limestone. Cobbles and bou	d is fine to ar to ulders are		58.5	58.62			7	18 23 35	
2.0 —	2.50	angular to subangular of limestone (up to 4 diameter). Obstruction - possible boulders or bedrock			58.0 -	- - - - 57.72	2.00	В			
3.0 —		Pit terminated at 2.50m			57.5	- - - -					
3.5 —					57.0 -						
4.0 —					56.5	- - -					
- - - - 4.5 -					56.0 -	_					
-					55.5	-					
1		Termination: Pit Wall Stability: 0	Groundwater	Rate: F	Remarl	ks:		K	ey:		
		Obstruction - possible boulders or bedrock.	Dry	-				D C	= Sm BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contract 56		Trial Pit and	Dynam	ic F	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	East	ting:		705840.4	189	Date:		29/11/2019	
Locatio	n:	Porterstown, Dublin 15	Nort	hing:	-	737601.9	985	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Elev	ation:	-	60.18		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		ensions VxD) (n		3.80 x 0).40 x 2.00	Scale) :	1:25	
Level		Stratum Description	Leg	end	evel	(mOD)	Sample			Probe	Water
Scale:	Depth	TOPSOIL.		S	cale:	Depth:	Depth ⁻	Гуре	0		Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	1.70	Firm brown grey slightly sandy gravelly silty with medium cobble content. Sand is fine to Gravel is fine to coarse, subangular to subrimestone. Cobbles are angular to subangulimestone. Very stiff black slightly sandy gravelly silty of high cobble and low boulder content. Sand coarse. Gravel is fine to coarse, subangular subrounded of limestone. Cobbles and bou angular to subangular of limestone (up to 4 diameter). Obstruction - boulders. Pit terminated at 2.00m	coarse. Founded of a silar of a s		60.0 — 69.5 - 69.0 — 66.5 - 66.5 -	59.88	2.00	В			•
		,	roundwater Rat	e: Rer	mark	(S:			(ey:		
		Obstruction - possible boulders or bedrock.	.90 Medium	-) = Sm CBR = Ur	k disturbed nall disturbed ndisturbed CBR ronmental	

Contract 56		Trial Pit and	Dynam	ic Pı	robe	Log		Trial Pit	
Contrac	ct:	Kellystown	East	ing:	705867.	394	Date:	28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Norti	ning:	737570.	820	Excavator:	JCB 3CX	
Client:		Castlethorn	Elev	ation:	60.72		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan		ensions /xD) (m):	4.00 x 0	0.40 x 2.20	Scale:	1:25	
Level		Stratum Description	Lege	ena	el (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth	Гуре 1		Strike
0.5 —		Firm becoming stiff brown grey slightly sand silty CLAY with medium cobble content. Sar to coarse. Gravel is fine to coarse, subangu subrounded of limestone. Cobbles are angu subangular of limestone.	nd is fine	60.5	- 60.52 	1.00	В 8	12	
1.5	1.50	Very stiff black slightly sandy gravelly silty C	21 AY with	59.5 59.5	59.22	1.00	8	17 24	
- - - - 2.0 —		high cobble and low boulder content. Sand i coarse. Gravel is fine to coarse, subangular subrounded of limestone. Cobbles and boul angular to subangular of limestone (up to 40 diameter).	is fine to to ders are	59.0 59.0	_ _ _ _	2.00	B 8	14 15	
- - -	2 20	Obstruction - possible boulders or bedrock. Pit terminated at 2.20m		58.5	58.52 	2.00		19 26 35	
2.5 —				58.0	- - - -				
3.0 —				57.5	- - -				
3.5 —				57.0	- - -				
4.0 —				56.5	- - -				
4.5 —				56.0	- - - -				
		Termination: Pit Wall Stability: Gr	roundwater Rate	e: Remai	rks:		Key:		
		Obstruction - possible boulders or bedrock.	Dry	-			D = S CBR = I	Bulk disturbed Small disturbed Undisturbed CBR nvironmental	

Contract 56	ct No: 62	Trial Pit and I	Dynan	nic	Pr	obe	Log			Trial Pit TP2	
Contra	ct:	Kellystown	Eas	sting:		705883.3	358	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Nor	rthing:		737579.	562	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Ele	vation	:	60.54		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		nensio		4.00 x 0	0.40 x 2.60	Scale	:	1:25	
Level		Stratum Description	Leg	gend		(mOD)	Sample			Probe	Water
Scale:	Depth	TOPSOIL.			Scale:		Depth ⁻	Гуре	2		Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	1.40	Stiff brown grey slightly sandy gravelly silty C medium cobble content. Sand is fine to coars Gravel is fine to coarse, subangular to subroulimestone. Cobbles are angular to subangular limestone. Very stiff black slightly sandy gravelly silty CL high cobble and low boulder content. Sand is coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and bould angular to subangular of limestone (up to 400 diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.60m	AY with since to color are seen and seen are see		59.5 - 59.0 - 57.5 - 57.0 - 56.5 - 56.0 - 56	59.14	2.00	В	2 2 2 5 5 5 7 8 11 6 6 6 4 6 10 10 10 11	1	•
-		Termination: Pit Wall Stability: Gro	oundwater Ra	te: R	emark	d d ds:		k	(ey:		
		-	0 Medium	-				B C	B = Bul D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	!

Contraction 56		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit TP2	
Contra	ct:	Kellystown	Easting:		705914.	200	Date:	28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing):	737588.	331	Excavat	tor: JCB 3CX	
Client:		Castlethorn	Elevation	n:	60.39		Logged	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.90 x (0.40 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	: Depth:	Depth ⁻	Гуре		Strike
0.5 —	0.60	Firm brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse.		60.0 -	- 60.19 - 59.79		1 2	4 6 8 7	
1.0 —	1.20	Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.		59.5		1.00	В	6 7 12 16	
1.5 —		Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter).		59.0 -	59.19			14 19 21 24 24 31	
2.0 —		Grey silty sandy fine to coarse, subangular to subrounded GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are angular to subangular of limestone.		58.5		2.00	В	35	
2.5 —		to subangular of limestone.		57.5	- - - -	2.50	В		
3.0 —	3.00	Pit terminated at 3.00m		57.0	- 57.39 				
3.5 —				57.0 -					
4.0 —				56.5	- - - -				
4.5 —				56.0 -					
-				55.5	-				
		Termination: Pit Wall Stability: Groundwater	r Rate: F	Remar	ks:		Key	y:	
		Scheduled depth. Pit walls stable. Dry	-						

Contract 56		Trial Pit and D	ynami	c Pı	obe	Log		Trial P	
Contrac	ct:	Kellystown	Eastir	ıg:	705882.	318	Date:	27/11/2019)
Locatio	n:	Porterstown, Dublin 15	Northi	ng:	737602.	217	Excavato	or: JCB 3CX	
Client:		Castlethorn	Eleva	tion:	60.25		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan		nsions (D) (m):	4.00 x 0	0.40 x 1.50	Scale:	1:25	
Level		Stratum Description	Legei	1a	el (mOD)	Sample		Probe	Water Strike
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth	Гуре 1		Strike
0.5 —		Firm becoming stiff brown grey slightly sandy grasilty CLAY with high cobble content. Sand is fine coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.	e to	60.0	60.05		3 2 3 3 4	5	
1.0				× 5 00.0	-	1.00	B = 4	5	
-		Very stiff black slightly sandy gravelly silty CLAY high cobble and low boulder content. Sand is fin coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders	ne to	59.0	59.15	1.40	В	6 12 12 9	
1.5 —	1.50	angular to subangular of limestone (up to 400mr diameter). Obstruction - boulders. Pit terminated at 1.50m		58.5	58.75	1.40		9 11 15 15	
2.0 —					-			7 7	
- - -				58.0				12 13	35
2.5 —									
3.0 —				57.5					
- -				57.0	- - -				
3.5 —									
-				56.5					
4.0 —									
-				56.0					
4.5 —				55.5					
		Termination: Pit Wall Stability: Ground	dwater Rate:	Remai	·ks:		Key:	:	
		-	Dry	-			B = D = CBR	Bulk disturbed Small disturbed = Undisturbed CB Environmental	R

Contra 56	ct No: 62	Trial Pit and D	ynami	Pr	obe	Log		Trial Pit	
Contra	ct:	Kellystown	Easting	j:	705880.	619	Date:	27/11/2019	
_ocatic	n:	Porterstown, Dublin 15	Northin	g:	737637.	530	Excavator	: JCB 3CX	
Client:		Castlethorn	Elevati	on:	60.36		Logged By	y: M. Kaliski	
Engine	er:	Waterman Moylan	Dimen: (LxWxI		4.40 x (0.40 x 2.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legen	Love	el (mOD)	Sample	es	Probe	Water
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth ⁻	Γype 1		Strike
0.5 —	0.00	Firm brown grey slightly sandy gravelly silty CL with high cobble content. Sand is fine to coarse Gravel is fine to coarse, subangular to subround limestone. Cobbles are angular to subangular collimestone. Stiff black slightly sandy gravelly silty CLAY with	ded of f	60.0 · 60	60.16	1.00	1 3 3 3 3 2 4		
1.0 —	1.30	cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders angular to subangular of limestone (up to 400m diameter). Medium dense becoming dense grey silty sand to coarse, subangular to subrounded GRAVEL limestone with high cobble and boulder content is fine to coarse. Cobbles and boulders are ang subangular of limestone (up to 400mm diameter).	s are m y fine of Sand gular to	59.0	59.06	1.50	B 65	10 14 12 29	5
2.0	2.10	Obstruction - possible boulders or bedrock. Pit terminated at 2.10m	**************************************	58.0	- - 58.26	2.00	В		
2.5 — — — — — — 3.0 —				57.5	- - - - - -				
- - - 3.5 —				57.0					
4.0 —				56.5	- - - -				
- 4.5 — - -				56.0					
					_				
		, ,	Seepage	Remar -	ks:		D = CBR =	Bulk disturbed Small disturbed - Undisturbed CBF Environmental	₹

Contract 56		Trial Pit and Dy	/namid	Pr	obe	Log			Trial Pit	
Contrac	ct:	Kellystown	Easting	:	705913.	542	Date:	2	8/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northin	g:	737616.	906	Excavat	tor: J	CB 3CX	
Client:		Castlethorn	Elevation	on:	60.52		Logged	By: N	1. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxI		4.10 x (0.40 x 2.30	Scale:	1	:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	el (mOD)	Sample	es	Pr	obe	Water
Scale:	Depth	·	2090	Scale	e: Depth:	Depth	Туре			Strike
1.5 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	1.70	TOPSOIL. Stiff brown grey slightly sandy gravelly silty CLAY medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounde limestone. Cobbles are angular to subangular of limestone. Very stiff black slightly sandy gravelly silty CLAY visual process. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders a angular to subangular of limestone (up to 400mm diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.30m	with to are	59.0 59.0 57.5 57.0	- 58.82 - 58.22 	2.00	B B	2 3 5 12 8 8 10 8	25 35	
-					-					
		Termination: Pit Wall Stability: Ground	water Rate:	Remar	·ks:		Key	y:		-
		Obstruction - Pit walls stable. Do possible boulders or bedrock.	ry	-				Small	listurbed disturbed sturbed CBR nmental	

Contraction 56	ct No: 62	Trial Pit and D	ynami	c Pı	obe	Log		Trial Pit	
Contra	ct:	Kellystown	Eastir	ng:	705932.	691	Date:	27/11/2019	
Locatio	n:	Porterstown, Dublin 15	North	ing:	737635.	516	Excavato	or: JCB 3CX	
Client:		Castlethorn	Eleva	tion:	60.96		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan		nsions (D) (m):	4.30 x (0.40 x 2.30	Scale:	1:25	
Level	(mbgl)	Stratum Description	Lege	Leve	el (mOD)	Sampl	es	Probe	Water
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth	Type		Strike
- - -	0.40	Firm brown grey slightly sandy gravelly silty CLA	AY Property	60.5	60.56		2 2 2 2		
0.5 — — —		with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subround limestone. Cobbles are angular to subangular of limestone.	led of		60.06		3 3 4	1 7	
1.0 —		Stiff becoming very stiff black slightly sandy grave silty CLAY with high cobble and low boulder comes and is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles boulders are angular to subangular of limestone to 400mm diameter).	s and	60.0	- 60.06	1.00	В	7 9 7 8	
1.5 —		,		59.5				35	
2.0 —	2.30	Obstruction - possible boulders or bedrock.		59.0	58.66	2.20	В		
2.5 — - - -		Pit terminated at 2.30m		58.5	_ _ _ _				
3.0 —				58.0					
3.5 —				57.5	- - - -				
4.0 —				57.0	- - - -				
4.5 —				56.5	_ _ _ _				
				56.0					
		Termination: Pit Wall Stability: Ground	dwater Rate:	Remai	rks:		Key:	:	
		Obstruction - possible boulders or bedrock.	Dry	-				Bulk disturbed Small disturbed = Undisturbed CBR = Environmental	

Contract 56		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit N	
Contrac	ct:	Kellystown	Easting:		705953.	624	Date:	26/	11/2019	
Locatio	n:	Porterstown, Dublin 15	Northing	j:	737617.	591	Excava	tor: JCE	3 3CX	
Client:		Castlethorn	Elevatio	n:	60.90		Logged	By: M. I	Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.80 x (0.40 x 3.00	Scale:	1:25	5	
Level		Stratum Description	Legend		l (mOD)	Sample		Prob	e	Water
Scale:	Depth	TOPSOIL.	X///X///	Scale	: Depth:	Depth ⁻	Гуре			Strike
0.5 —		Stiff brown grey slightly sandy slightly gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone.	# 0 - X 0 -	60.5	- 60.70 		1	5 8 8 5 4 5		
-			× · · · · · · · · · · · · · · · · · · ·	60.0	_	4.00		6		
1.0 —	1.10	Very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are		59.5	59.80	1.00	В	8 10 15 17		
1.5 —		angular to subangular of limestone (up to 400mm diameter).		39.3	7	1.50	В	19 19		
2.0	1.70	Dense grey silty sandy fine to coarse, subangular to subrounded GRAVEL of limestone with high cobble content. Sand is fine to coarse. Cobbles are angular to subangular of limestone.		59.0 -	- 59.20 	2.00	В	2	1 28 35	
2.5 —				58.5	- - - -					
-			4 X 9 X 9 X	58.0	_					
3.0 —	3.00	Pit terminated at 3.00m			- 57.90 -					
3.5 —				57.5	- - - -					
4.0				57.0	- - - -					
4.5				56.5	- - -					
-				56.0 -	-					
		Termination: Pit Wall Stability: Groundwate	er Rate: F	Remar	ks:		Key	y:		
		Scheduled depth. Pit walls stable. Dry	-						sturbed bed CBR	

Contraction 56	ct No:	Trial Pit and I	Dynan	nic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Eas	sting:		705936.0	057	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15	Nor	rthing	:	737601.	948	Exca	/ator:	JCB 3CX	
Client:		Castlethorn	Ele	vatior	1:	60.54		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		nensio		4.00 x 0	0.40 x 2.50	Scale	:	1:25	
Level	(mbgl)	Stratum Description	Leo	gend	Leve	I (mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.			Scale 60.5		Depth -	Гуре	0		Strike
0.5 —		Firm brown grey slightly sandy gravelly silty C with medium cobble content. Sand is fine to co Gravel is fine to coarse, subangular to subrou limestone. Cobbles are angular to subangular limestone.	coarse.		60.0 -	60.34			1 1 2 2 2 2 3 4		
1.0 —		Stiff becoming very stiff black slightly sandy gradity CLAY with high cobble and low boulder or Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of limestone. Cobb boulders are angular to subangular of limestor to 400mm diameter).	content. $\frac{2}{2}$ e, $\frac{2}{2}$ oles and $\frac{2}{2}$		59.5 - 59.0 -	59.44	1.00	В	4 7 5 6	1 13 18 18 18	
2.0 —	2.50	Obstruction - possible boulders or bedrock. Pit terminated at 2.50m			58.5 · 58.0 ·	58.04	2.00	В			
3.0 —					57.5	- - - - -					
3.5 —					57.0 -	- - -					
4.0 —					56.5 -	- - -					
4.5 —					56.0 -	_ _ _ _ _					
		Termination: Pit Wall Stability: Grou	undwater Ra	ıte: R	emarl	(s:		k	(ey:		
		Obstruction - possible boulders or bedrock.	Dry	-				B	s = Bu 0 = Sm 3BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contra 56	ct No:	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit TP3	
Contra	ct:	Kellystown	Easting	:	705995.	038	Date:	28/11/2019	
Locatio	on:	Porterstown, Dublin 15	Northin	g:	737589.	348	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	60.59		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		4.00 x 0	0.40 x 1.60	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sample	es	Probe	Wate
Scale:	Depth	TOPSOIL.	Legene	Scale	<u> </u>	Depth	Гуре	1 1000	Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	1.20	Firm becoming stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff becoming very stiff black slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulders are angular to subangular of limestone (up to 400mm diameter). Obstruction - possible boulders or bedrock. Pit terminated at 1.60m		60.5 60.0 - 59.0 - 58.5 57.0 - 56.5 -	- 60.39 - 60.39 - 59.39 - 58.99 	1.00	B B 5 6 5 5 B	21 35	
- -					-				
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remarl	ks:		Key:		
		Obstruction - possible boulders or bedrock. Pit walls stable. Dry	,	-			D = Si CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	l

Contract 56		Trial Pit and [Dyna	mic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Kellystown	E	asting:		706012.	125	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15	N	lorthing		737637.	917	Excav	ator:	JCB 3CX	
Client:		Castlethorn	E	levation	1:	61.19		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		imensio xWxD)		3.80 x 0	0.40 x 1.60	Scale:		1:25	
Level	(mbgl)	Stratum Description		_egend		l (mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.		///////	Scale	: Depth:	Depth	Гуре	0		Strike
0.5	0.20	Firm brown slightly sandy gravelly silty CLAY of cobble content. Sand is fine to coarse. Gravel to coarse, subangular to subrounded of limest Cobbles are angular to subangular of limestor	is fine tone.		61.0 -	60.99			2 1 2 3 3 5		
1.0 —		Stiff brown grey slightly sandy gravelly silty CL medium cobble content. Sand is fine to coarse Gravel is fine to coarse, subangular to subroulimestone. Cobbles are angular to subangular limestone.	e. Inded of		60.0 -	- 60.29 - - - -	1.00	B	6 9 8 5 5	35	
1.5 — - - -		Very stiff black slightly sandy gravelly silty CLA high cobble and low boulder content. Sand is coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulde angular to subangular of limestone (up to 400	fine to o ers are	**************************************	59.5	59.69 59.59	1.50	В			
2.0 —		diameter). Obstruction - possible boulders or bedrock. Pit terminated at 1.60m			59.0 -	- - - -					
2.5 —					58.5	- - - -					
3.0 —					58.0 -	_					
3.5 —					57.5	- - -					
4.0 —					57.0 -	- - -					
4.5 —					56.5	- - - -					
	_	Termination: Pit Wall Stability: Grou	undwater F	Rate: R	emarl	ks:		K	ey:		
		Obstruction - possible boulders or bedrock.	Dry	-				B D C	= Bul = Sm BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contra 56	ct No: 62	Trial Pit and	d Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ct:	Kellystown		Easting:		705985.	469	Date:		28/11/2019	
Locatio	n:	Porterstown, Dublin 15		Northing	j:	737672.	796	Excava	ator:	JCB 3CX	
Client:		Castlethorn		Elevatio	n:	61.58		Logged	d By:	M. Kaliski	
Engine	er:	Waterman Moylan		Dimensi (LxWxD		3.60 x 0	0.40 x 2.60	Scale:		1:25	
Level	(mbgl)	Stratum Description		Legend	Leve	l (mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.			Scale	: Depth:	Depth	Гуре			Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	0.60 1.20 1.80	Firm brown grey slightly sandy gravelly sil with low cobble content. Sand is fine to co Gravel is fine to coarse, subangular to sublimestone. Cobbles are angular to subang limestone. Firm brown grey slightly sandy gravelly sil with medium cobble content. Sand is fine Gravel is fine to coarse, subangular to sublimestone. Cobbles are angular to subang limestone. Very stiff black slightly sandy gravelly silty high cobble and low boulder content. Sancoarse. Gravel is fine to coarse, subangul subrounded of limestone. Cobbles and boangular to subangular of limestone (up to diameter). Medium dense grey silty sandy fine to coasubangular to subrounded GRAVEL of lim high cobble and boulder content. Sand is coarse. Cobbles and boulders are angular subangular of limestone (up to 400mm diameter). Obstruction - possible boulders or bedrock Pit terminated at 2.60m	varse. brounded of gular of Ity CLAY to coarse. brounded of gular of Y CLAY with d is fine to ar to bulders are 400mm arse, the stone with fine to r to armeter).		61.5 61.0 - 60.5 60.0 - 59.5 59.0 -	- - - - - - - -	1.00	B B		14 3 35	•
		,	Groundwater	Rate: F	Remar	ks:		Ke			
		Obstruction - Pit walls stable. possible boulders or bedrock.	2.40 Slow	-					= Sma BR = Una	k disturbed all disturbed disturbed CBR ronmental	

Contra 56	ct No: 662	Trial Pit and I	Dynami	c Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Eastir	ıg:	706033.	157	Date:		25/11/2019	
Locatio	on:	Porterstown, Dublin 15	North	ng:	737679.	038	Excav	ator:	JCB 3CX	
Client:		Castlethorn	Eleva	tion:	61.86		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan		nsions (D) (m):	4.00 x 0	0.40 x 1.80	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legei	Leve	el (mOD)	Sample			Probe	Water
Scale:	Depth	TOPSOIL.		Scale	e: Depth:	Depth ⁻	Гуре	0		Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	0.70	Firm light brown slightly sandy gravelly silty C with medium cobble content. Sand is fine to co Gravel is fine to coarse, subangular to subrou limestone. Cobbles are angular to subangular limestone. Firm brown grey slightly sandy gravelly silty C with high cobble content. Sand is fine to coarse Gravel is fine to coarse, subangular to subrou limestone. Cobbles are angular to subangular limestone. Very stiff black slightly sandy gravelly silty CL high cobble content. Sand is fine to coarse. G fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular limestone. Obstruction - possible boulders or bedrock. Pit terminated at 1.80m	oarse. Inded of of CLAY Se. Inded of of AY with Gravel is	61.5 61.5 61.0 60.0 59.5	60.76	1.00	В	2 2 3 3 4 4 2 2 2 9	28 27 31 35	•
	-			57.0	-					
		,	undwater Rate: Slow	Remar	ks:		K B	ey: = Bul	k disturbed	
(possible boulders or bedrock.	, SIUW	-			D Cl	= Sm BR = Ur	ik disturbed nall disturbed ndisturbed CBR ironmental	

Contra 56	ct No: 662	Trial Pit and Dyn	amic	: Pr	obe	Log		Trial Pit TP3	
Contra	ct:	Kellystown	Easting	:	705999.	491	Date:	25/11/2019	
Locatio	on:	Porterstown, Dublin 15	Northin	g:	737710.	735	Excavator:	JCB 3CX	
Client:		Castlethorn	Elevation	n:	61.90		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		4.10 x (0.40 x 1.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l el (mOD)	Sampl	es	Probe	Wate
Scale:	<u> </u>	TOPSOIL.	Logono	Scale		Depth	Type 2	1 1000	Strike
1.0 — 1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	1.10	Firm brown slightly sandy gravelly silty CLAY with locobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles are angular to subangular of limestone. Stiff brown grey slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subrounded collimestone. Cobbles are angular to subangular of limestone. Obstruction - boulders. Pit terminated at 1.10m	h	61.5 60.5 60.0 59.5 58.5	- 61.80 - 61.60 - 61.60 60.80 	1.00	B	24 21 23 25 25 27 29 29 30 31 35	
-					-				
-				57.0 -					
		Termination: Pit Wall Stability: Groundwal	er Rate:	Remar	ks:		Key:		
		Obstruction - Pit walls stable. Dry possible boulders or bedrock.		-			B = Bu D = Si CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	2

Contract No: 5662		Trial Pit and D	ynami	c Pr	obe		Trial Pit No: TP38			
Contra	ct:	Kellystown	Easting	g:	706025.	992	Date:		25/11/2019	
Locatio	n:	Porterstown, Dublin 15	Northir	ıg:	737712.	636	Excava	ator:	JCB 3CX	
Client:		Castlethorn	Elevati	on:	61.95		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimen (LxWx		4.20 x 0	0.40 x 1.80	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legen	Leve	el (mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.	Logon	Scale	e: Depth:	Depth	Туре	1	11000	Strike
0.5 —	1.00	Firm brown slightly sandy gravelly silty CLAY wi cobble content. Sand is fine to coarse. Gravel is to coarse, subangular to subrounded of limestone Cobbles are angular to subangular of limestone Stiff brown grey slightly sandy gravelly silty CLA medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, subangular to subround limestone. Cobbles are angular to subangular or limestone. Grey silty sandy fine to coarse, subangular to	AY with	61.5 61.0 61.0	60.95	0.90	В	1 3 6 10 110		
2.0 —		subrounded GRAVEL of limestone with high col- content. Sand is fine to coarse. Cobbles are and to subangular of limestone. Obstruction - possible boulders or bedrock. Pit terminated at 1.80m		60.0	60.15					•
3.0 —				59.0 · 58.5	- - -					
3.5 — — — — — — 4.0 —				58.0	- - - - -					
4.5 —				57.5	- - -					
				57.0						
		, ,	ndwater Rate: Rapid	Remar -	·ks:			= Bul = Sm 3R = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 56		Trial Pit and D	Dynan	nic	Pr	obe	Log			Trial Pit	
Contra	ct:	Kellystown	Ea	asting:		706042.	152	Date	:	25/11/2019	
Locatio	n:	Porterstown, Dublin 15	No	orthing		737711.9	912	Exca	vator:	JCB 3CX	
Client:		Castlethorn	Ele	evatior	1:	62.04		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		mensio xWxD)		4.00 x 0).40 x 2.70	Scale	e:	1:25	
Level	(mbgl)	Stratum Description	Le	egend.	Level	(mOD)	Sample	es		Probe	Water
Scale:	Depth	TOPSOIL.	X//2		Scale: 62.0 -	Depth:	Depth -	Гуре	1		Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	2.20	Firm brown slightly sandy gravelly silty CLAY very stiff brown grey slightly sandy gravelly silty CL medium cobble content. Sand is fine to coarse. Gravel to coarse, subangular to subangular of limeston. Stiff brown grey slightly sandy gravelly silty CL medium cobble content. Sand is fine to coarse Gravel is fine to coarse, subangular to subrour limestone. Cobbles are angular to subangular limestone. Very stiff black slightly sandy gravelly silty CLA high cobble and low boulder content. Sand is fecoarse. Gravel is fine to coarse, subangular to subrounded of limestone. Cobbles and boulde angular to subangular of limestone (up to 400r diameter). Obstruction - possible boulders or bedrock. Pit terminated at 2.70m	is fine cone. AY with fine to cone. AY with fine to cone.	에 이 시간 이 시	61.5 - 61.0 - 60.5 - 59.5 - 59.0 -	61.74 61.34 59.84	2.00	ВВВ	2 2 9	13 23 27 29 31 32 32 35 35	
					57.5 -	-					
		Termination: Pit Wall Stability: Grou	undwater Ra	ate: R	emark	(S:		ŀ	Key:		I .
		Obstruction - Pit walls stable. possible boulders or bedrock.	Dry	-]	D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

TP01 Sidewall

TP01 Spoil


TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP09 Spoil

TP10 Sidewall

TP10 Spoil

TP11 Sidewall

TP11 Spoil

TP12 Sidewall

TP12 Spoil

TP13 Sidewall

TP13 Spoil

TP14 Sidewall

TP14 Spoil

TP15 Sidewall

TP15 Spoil

TP16 Sidewall

TP16 Spoil

TP17 Sidewall

TP17 Spoil

TP18 Sidewall

TP18 Spoil

TP19 Sidewall

TP19 Spoil

TP20 Sidewall

TP20 Spoil

TP21 Sidewall

TP21 Spoil

TP22 Sidewall

TP22 Spoil

TP23 Sidewall


TP23 Spoil

TP24 Sidewall

TP24 Spoil

TP25 Sidewall

TP25 Spoil

TP26 Sidewall

TP26 Spoil

TP27 Sidewall

TP27 Spoil

TP28 Sidewall

TP28 Spoil

TP29 Sidewall

TP29 Spoil

TP30 Sidewall

TP30 Spoil

TP31 Sidewall

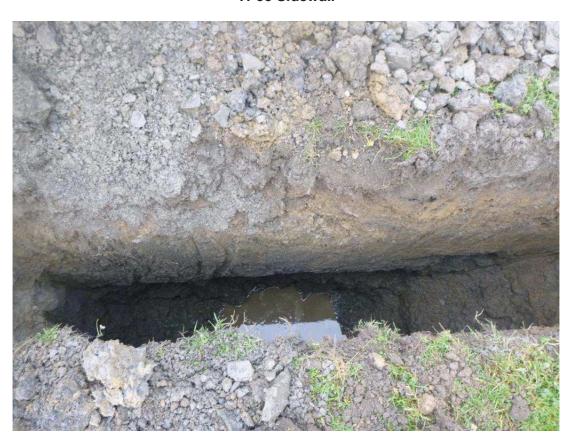
TP31 Spoil

TP32 Sidewall

TP32 Spoil

TP33 Sidewall

TP33 Spoil


TP34 Sidewall

TP34 Spoil

TP35 Sidewall

TP35 Spoil

TP36 Sidewall

TP36 Spoil

TP37 Sidewall

TP37 Spoil

TP38 Sidewall

TP38 Spoil

TP39 Photographs Missing

Appendix 3 Soakaway Test Results

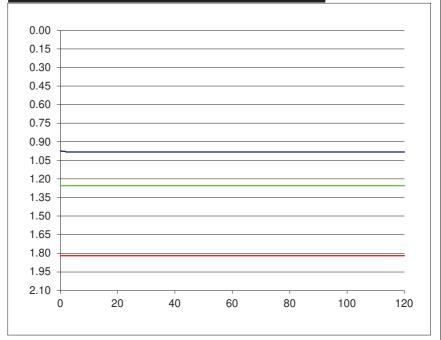
Project Reference:	5662
Contract name:	Residential Development
Location:	Kellystown, Porterstown, Dublin 15
Tool No.	0.401

SA01 27/11/2019 Test No:

Date:

Ground Conditions		
From	То	
0.00	0.20	TOPSOIL.
0.20	0.80	Firm grey brown slightly sandy gravelly silty CLAY with high cobble content.
0.80	2.10	Firm grey slightly sandy gravelly silty CLAY with high cobble and low boulder content.

0.80	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	0.97
0.5	0.98
1	0.98
1.5	0.98
2	0.98
2.5	0.98
3	0.98
3.5	0.98
4	0.98
4.5	0.98
5	0.98
6	0.98
7	0.98
8	0.98
9	0.98
10	0.98
12	0.98
14	0.98
16	0.98
18	0.98
20	0.98
25	0.98
30	0.98
40	0.98
50	0.98
60	0.98
75	0.98


90

120

0.98

0.98

ent.		
Pit Dimensions (m)		
Length (m)	2.70	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	0.97	m
Depth of Water	1.13	m
75% Full	1.25	m
25% Full	1.82	m
75%-25%	0.57	m
Volume of water (75%-25%)	0.61	m3
Area of Drainage	13.02	m2
Area of Drainage (75%-25%)	4.583	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

<u>Fail</u> <u>Fail</u> f = or m/min m/s

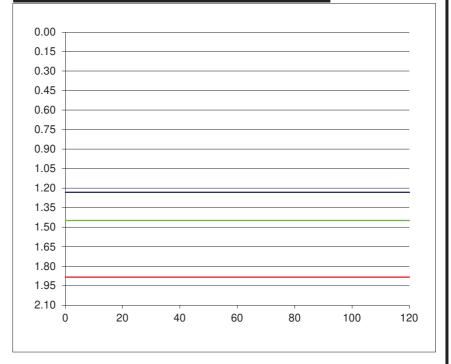
Project Reference: 5662

Contract name: Residential Development

Location: Kellystown, Porterstown, Dublin 15

Test No: SA02

Date: 26/11/2019


Ground Conditions		
From	То	
0.00	0.20	TOPSOIL.
0.20	1.20	Firm grey brown slightly sandy gravelly silty CLAY with medium cobble content.
1.20	2.10	Stiff black slightly sandy gravelly silty CLAY with high cobble content.

1.20	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.23
0.5	1.23
1	1.23 1.23 1.23
1.5	1.23
2	1.23
2.5	1.23
3	1.23
3.5	1.23
4	1.23
4.5	1.23
5	1.23
6	1.23
7	1.23 1.23
8	
9	1.23
10	1.23
12	1.23
14	1.23
16	1.23
18	1.23
20	1.23
25	1.23
30	1.23
40	1.23
50	1.23
60	1.23
75	1.23
90	1.23

120

1.23

Pit Dimensions (m)		
Length (m)	3.30	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.23	m
Depth of Water	0.87	m
75% Full	1.45	m
25% Full	1.88	m
75%-25%	0.44	m
Volume of water (75%-25%)	0.57	m3
Area of Drainage	15.54	m2
Area of Drainage (75%-25%)	4.539	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

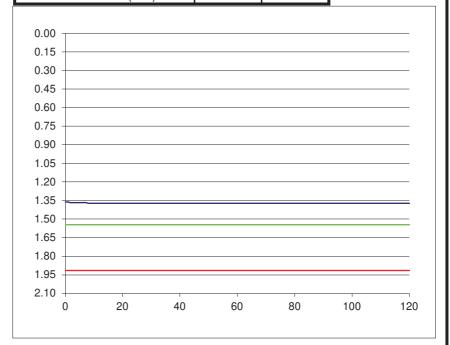
f = Fail or Fail m/min

Project Reference:	5662
Contract name:	Residential Development
Location:	Kellystown, Porterstown, Dublin 15

Test No: SA03 **Date:** 26/11/2019

Ground Conditions		
From	То	
0.00	0.30	TOPSOIL.
0.30	0.70	Firm grey brown slightly sandy gravelly silty CLAY with medium cobble content.
0.70	1.60	Firm grey slightly sandy gravelly silty CLAY with low cobble content.
1 60	2 10	Stiff black slightly sandy gravelly silty CLAY with high cobble content

0.70	1.00	
1.60	2.10	
Elapsed Time	Fall of Water	
(mins)	(m)	
0	1.36	
0.5	1.36	
1	1.36	
1.5	1.37	
2	1.37	
2.5	1.37	
3	1.37	
3.5	1.37	
4	1.37	
4.5	1.37	
5	1.37	
6	1.37	
7	1.37	
8	1.37	
9	1.37	
10	1.37	
12	1.37	
14	1.37	
16	1.37	
18	1.37	
20	1.37	
25	1.37	
30	1.37	
40	1.37	
50	1.37	
60	1.37	
75	1.37	


90

120

1.37

1.37

Pit Dimensions (m)	<u>, </u>	J
Length (m)	3.20	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.36	m
Depth of Water	0.74	m
75% Full	1.55	m
25% Full	1.92	m
75%-25%	0.37	m
Volume of water (75%-25%)	0.47	m3
Area of Drainage	15.12	m2
Area of Drainage (75%-25%)	3.94	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

Project Reference:	5662
Contract name:	Residential Development
Location:	Kellystown, Porterstown, Dublin 15
Tool No.	0.4.0.4

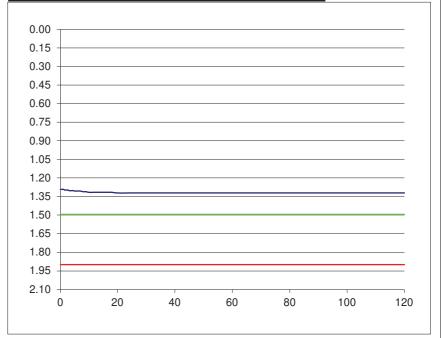
 Test No:
 SA04

 Date:
 26/11/2019

Ground	Conditions

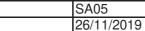
Ground Condi	110113	
From	То	
0.00	0.20	TOPSOIL.
0.20	0.60	Soft brown slightly sandy gravelly silty CLAY with medium cobble content.
0.60	2.10	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with high
		cobble and low boulder content.
E1 1 T'	- II () A / I	Dit Dimonoiono (m)

2.10	
Fall of Water	
(m)	
1.29	
1.29	
1.29	
1.30	
1.30	
1.30	
1.30	
1.30	
1.30	
1.30 1.31	
1.31	
1.31	
1.31	
1.31	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	
1.32	


90

120

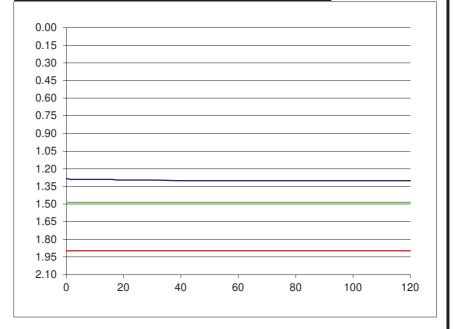
1.32


1.32

e and low boulder content.			
Pit Dimensions (m)			
Length (m)	3.10	m	
Width (m)	0.40	m	
Depth	2.10	m	
Water			
Start Depth of Water	1.29	m	
Depth of Water	0.81	m	
75% Full	1.49	m	
25% Full	1.90	m	
75%-25%	0.41	m	
Volume of water (75%-25%)	0.50	m3	
Area of Drainage	14.70	m2	
Area of Drainage (75%-25%)	4.08	m2	
Time			
75% Full	N/A	min	
25% Full	N/A	min	
Time 75% to 25%	N/A	min	
Time 75% to 25% (sec)	N/A	sec	

f = Fail or Fail m/min

Project Reference: 5662 Contract name: Residential Development Location: Kellystown, Porterstown, Dublin 15 Test No:


Ground Conditions		
From	То	
0.00	0.20	TOPSOIL.
0.20	0.90	Soft brown slightly sandy gravelly silty CLAY with low cobble content.
0.90	1.20	Firm brown slightly sandy gravelly silty CLAY with high cobble content.
1.20	1.80	Firm grey slightly sandy gravelly silty CLAY with high cobble content.
1.80	2.10	Stiff grey slightly sandy gravelly silty CLAY with high cobble content.

1.80	2.10		
Elapsed Time	Fall of Water		
(mins)	(m)		
0	1.28		
0.5	1.29		
1 1.5	1.29		
1.5	1.29		
2 2.5	1.29		
2.5	1.29		
3 3.5	1.29		
3.5	1.29		
4	1.29		
4.5	1.29 1.29		
5 6 7 8	1.29		
6	1.29		
7	1.29		
	1.29		
9	1.29		
10	1.29		
12	1.29		
14 16	1.29		
16	1.29		
18	1.30		
20	1.30		
25	1.30		
30	1.30		
40	1.30		
50	1.30		
60	1.30		
75	1.30		
90	1.30		

120

Date:

grey slightly saridy gravelly slity	0 = 7 1 1 1111	
Pit Dimensions (m)		
Length (m)	2.60	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.28	m
Depth of Water	0.82	m
75% Full	1.49	m
25% Full	1.90	m
75%-25%	0.41	m
Volume of water (75%-25%)	0.43	m3
Area of Drainage	12.60	m2
Area of Drainage (75%-25%)	3.50	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

<u>Fail</u> Fail f = or m/s m/min

1.30

SA01 Photographs Missing SA02 Sidewall

SA02 Spoil

SA03 Sidewall

SA03 Spoil

SA04 Sidewall

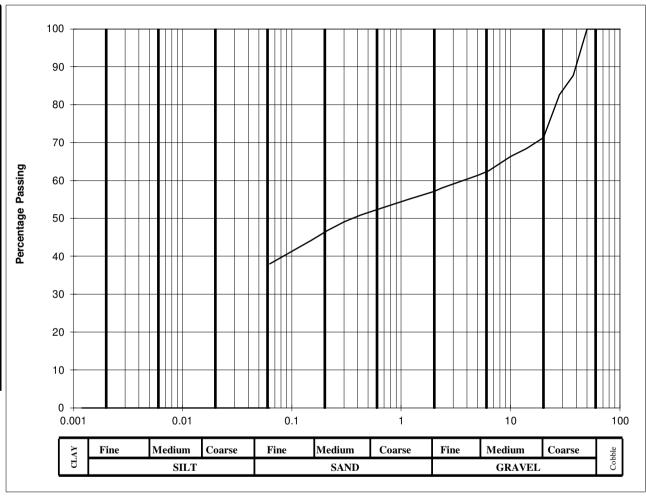
SA04 Spoil

SA05 Sidewall

SA05 Spoil

Appendix 4 Geotechnical Laboratory Test Results

Classification Tests in accordance with BS1377: Part 4


Client	Castlethorn Construction Ltd.
Site	Kellystown, Co. Dublin
S.I. File No	5662 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	11th December 2019

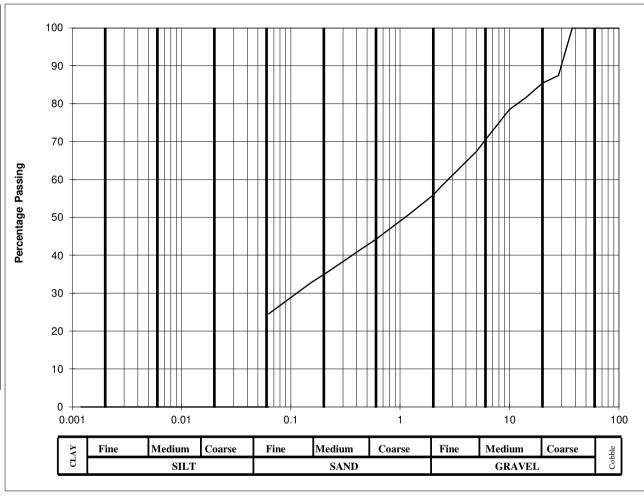
Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay;
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		M=Silt Plasticity:
					Content	%	%	%	Mg/m^3	Mg/m^3	425um		L=Low; I=Intermediate;
					%					C			H =High; V =Very High;
													E=Extremely High
TP01	1.00	MK02	19/1570	В	13.4	36	22	14			50.8		CI
TP09	1.50	MK18	19/1572	В	15.5	37	21	16			41.3		CI
TP31	1.00	MK62	19/1573	В	15.5	34	20	14			71.9		CL

Printed 10/01/2020 Paddy McGonagle
Sheet 1 of 1 Site Investigations Ltd

BS Sieve	Percent	Hydrometer analysis	
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	87.7		
28	82.6		
20	71.3		
14	68.4		
10	66.3		
6.3	62.5		
5.0	61.3		
2.36	58		
2.00	57.1		
1.18	55.1		
0.600	52.3		
0.425	50.8		
0.300	49.1		
0.212	46.8		
0.150	44.2		
0.063	38		·

Cobbles, %	0
Gravel, %	43
Sand, %	19
Clay / Silt, %	38

Client:	Castlethorn Construction Ltd.	
Project:	Kellystown, Co. Dublin	Sa

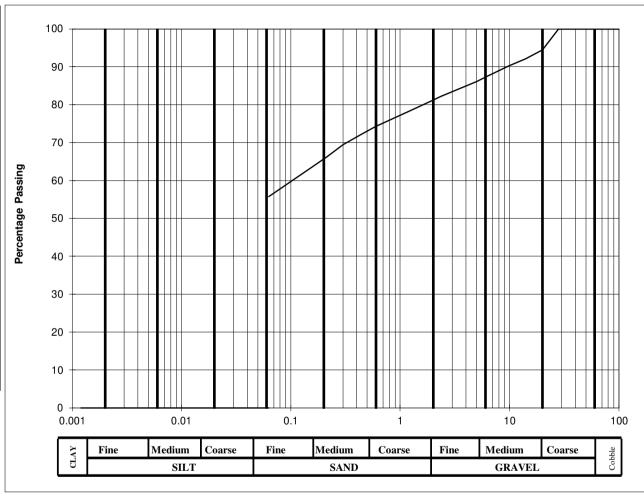

Lab. No:	19/1570
Sample No:	MK02

Hole ID:	TP 01
Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Domonica	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer analysis	
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	87.4		
20	85.4		
14	81.5		
10	78.5		
6.3	71.1		
5.0	67.4		
2.36	58.1		
2.00	55.8		
1.18	50.6		
0.600	44.2		
0.425	41.3		
0.300	38.3		
0.212	35.4		
0.150	32.6		
0.063	25	_	

Cobbles, %	0
Gravel, %	44
Sand, %	31
Clay / Silt, %	25


Client:	Castlethorn Construction Ltd.	Lab. No:	19/15
Project:	Kellystown, Co. Dublin	Sample No:	MK

:	19/1572	Hole ID:	TP 09
:	MK18	Depth, m:	1.50

Material description:	slightly sandy gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	94.4		
14	92.1		
10	90.3		
6.3	87.5		
5.0	86.1		
2.36	82.2		
2.00	81.2		
1.18	78.1		
0.600	74.2		
0.425	71.9		
0.300	69.4		
0.212	66.1		
0.150	63.2		
0.063	56		

Cobbles, %	0
Gravel, %	19
Sand, %	25
Clay / Silt, %	56

Client:	Castlethorn Construction Ltd.
Project:	Kellystown, Co. Dublin

Lab. No:	19/1573	Hole ID:	TP 31
Sample No:	MK62	Depth, m:	1.00

	Material description:	slightly sandy slightly gravelly silty CLAY
	Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
		Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Castlethorn Construction Ltd.
Site	Kellystown, Co. Dublin
S.I. File No	5662 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	11th December 2019

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Type		(%)		
CBR01	0.50	MK30	В	19/1579	24.7	5.8	
CBR02	0.50	MK31	В	19/1580	24.5	6.2	
CBR03	0.50	MK32	В	19/1581	24.8	6.6	
CBR04	0.50	MK33	В	19/1582	17.1	6.2	
CBR05	0.50	MK34	В	19/1583	20.1	8.1	
CBR06	0.50	MK35	В	19/1584	26.1	6.9	
CBR07	0.50	MK36	В	19/1585	19.1	6.6	
CBR08	0.50	MK37	В	19/1586	22.4	7.1	
CBR09	0.50	MK38	В	19/1587	17.2	6.7	
CBR10	0.50	MK39	В	19/1588	17.9	6.8	
CBR11	0.50	MK40	В	19/1589	23.1	6.9	
CBR12	0.50	MK41	В	19/1590	22.5	5.9	
CBR13	0.50	MK42	В	19/1591	22.6	6.9	
CBR14	0.50	MK43	В	19/1592	31.4	6.8	
CBR15	0.50	MK44	В	19/1593	25.0	6.6	
CBR16	0.50	MK45	В	19/1594	23.1	7.7	
CBR17	0.50	MK46	В	19/1595	25.8	7.3	
CBR18	0.50	MK47	В	19/1596	20.9	6.2	
CBR19	0.50	MK48	В	19/1597	32.6	6.1	
CBR20	0.50	MK49	В	19/1598	23.2	8.5	
CBR21	0.50	MK50	В	19/1599	23.9	5.8	
CBR22	0.50	MK51	В	19/1600	20.6	6.6	
CBR23	0.50	MK52	В	19/1601	34.3	11.6	

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Castlethorn Construction Ltd.
Site	Kellystown, Co. Dublin
S.I. File No	5662 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	11th December 2019

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Type		(%)		
CBR24	0.50	MK53	В	19/1602	13.6	6.2	
CBR25	0.50	MK54	В	19/1603	15.6	8.5	

Chemical Testing In accordance with BS 1377: Part 3

Client	Castlethorn Construction Ltd.
Site	Kellystown, Co. Dublin
S.I. File No	5662 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	11th December 2019

Hole Id	Depth	Sample	Lab Ref	рН	Water Soluble	Water Soluble	Loss on	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Ignition	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	(Organic	Content		
					extract) (SO ₃)	extract) (SO ₃)	Content)	(water:soil		
					g/L	%	%	ratio 2:1)		
								%		
TP01	1.00	MK02	19/1570	7.38	0.120	0.069		0.18	57.1	
TP09	0.50	MK17	19/1571	7.77	0.123	0.069		0.17	55.8	
TP31	1.00	MK62	19/1573	7.96	0.122	0.099		0.22	81.2	

Paddy McGonagle
Site Investigations Ltd.

Appendix 5 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 19 December 2019 **Customer:** Site Investigations Ltd

191210-138 Sample Delivery Group (SDG): 5662 Your Reference: Kellystown Location: 534878 Report No:

We received 6 samples on Tuesday December 10, 2019 and 6 of these samples were scheduled for analysis which was completed on Thursday December 19, 2019. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan **Operations Manager**

CERTIFICATE OF ANALYSIS

Validated

SDG: 191210-138 Location: Kellystown

Client Reference: Order Number: 5662 26/B/19 Report Number: Superseded Report: 534878

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
21332039	TP01		1.00	09/12/2019
21332040	TP03		0.50	09/12/2019
21332041	TP06		0.50	09/12/2019
21332042	TP09		0.50	09/12/2019
21332043	TP15		0.50	09/12/2019
21332044	TP31		1.00	09/12/2019

Maximum Sample/Coolbox Temperature (°C):

5.2

ISO5667-3 Water quality - Sampling - Part3 -

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^{\circ}$ C for a period of up to 24hrs.

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of $(5\pm3)^{\circ}C$.

Only received samples which have had analysis scheduled will be shown on the following pages.

534878

CERTIFICATE OF ANALYSIS

ALS

SDG: 191210-138 Client Reference: 5662 Report Number: Kellystown Order Number: 26/B/19 Superseded Report: Location: Results Legend 21332039 21332040 21332041 21332042 21332043 21332044 Lab Sample No(s) X Test No Determination Possible Customer TP15 TP03 TP31 TP01 **TP06** ГР09 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water 0.50 0.50 0.50 0.50 Depth (m) .00 .00 TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g 60g VOC (ALE215) 60g VOC (ALE215) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB 250g Amber J (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory VOC (ALE215) UNL - Unspecified Liquid 1kg TUB SL - Sludge Container G - Gas OTH - Other Jar Sample Type S S S S S S S S S S S Anions by Kone (w) All NDPs: 0 Tests: 3 Χ X Χ CEN Readings All NDPs: 0 Tests: 3 X X X Chromium III All NDPs: 0 Tests: 3 X X X Coronene All NDPs: 0 Tests: 3 Χ X Х Dissolved Metals by ICP-MS All NDPs: 0 Tests: 3 Χ Χ Χ All Dissolved Organic/Inorganic Carbon NDPs: 0 Tests: 3 Χ Χ Χ EPH CWG GC (S) All NDPs: 0 Tests: 3 Χ X Χ Fluoride All NDPs: 0 Tests: 3 X Χ X GRO by GC-FID (S) All NDPs: 0 Tests: 3 Χ X X Hexavalent Chromium (s) All NDPs: 0 Tests: 3 X X Х Loss on Ignition in soils All NDPs: 0 Tests: 6 X Χ X X X Mercury Dissolved All NDPs: 0 Tests: 3 Χ X Χ Metals in solid samples by OES All NDPs: 0 Tests: 3 Χ Χ Χ Mineral Oil All NDPs: 0 Tests: 3 Χ Χ Χ PAH by GCMS All NDPs: 0 Tests: 3 X X Χ

534878

CERTIFICATE OF ANALYSIS

ALS	

SDG: 191210-138 Client Reference: 5662 Report Number: Kellystown Order Number: 26/B/19 Superseded Report: Location: Results Legend 21332039 21332040 21332041 21332042 21332043 21332044 Lab Sample No(s) X Test No Determination Possible Customer TP03 TP15 TP31 TP01 TP06 TP09 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water 0.50 0.50 0.50 0.50 Depth (m) .00 .00 TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g 250g Amber Jar (ALE210) 60g VOC (ALE215) 60g 250g Amber Jar (ALE210) 60g VOC (ALE215) 60g 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB DW - Drinking Water Non-regulatory VOC (ALE215) UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S S PCBs by GCMS All NDPs: 0 Χ Χ X Phenols by HPLC (W) All NDPs: 0 Tests: 3 Χ X X Sample description All NDPs: 0 Tests: 6 Χ Χ Χ X Х Х Total Dissolved Solids on Leachates All NDPs: 0 Tests: 3 Х Х Х Total Organic Carbon All NDPs: 0 Tests: 3 X Χ Χ TPH CWG GC (S) All NDPs: 0 Tests: 3 Χ Χ X VOC MS (S) All NDPs: 0 Tests: 3 X X X

 SDG:
 191210-138
 Client Reference:
 5662
 Report Number:
 534878

 Location:
 Kellystown
 Order Number:
 26/B/19
 Superseded Report:

Sample Descriptions

Grain Sizes

very fine <0	.063mm fine 0.0	63mm - 0.1mm m	edium 0.1mm	n - 2mm coai	rse 2mm - 1	.0mm very coa	arse
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2	Ī
21332039	TP01	1.00	Dark Brown	Loamy Sand	Stones	None	
21332040	TP03	0.50	Light Brown	Silt Loam	Stones	Vegetation	
21332041	TP06	0.50	Light Brown	Silt Loam	Stones	Vegetation	1
21332042	TP09	0.50	Dark Brown	Loamy Sand	Vegetation	Stones	
21332043	TP15	0.50	Light Brown	Silt Loam	Stones	Vegetation	
21332044	TP31	1.00	Dark Brown	Loamy Sand	Vegetation	Stones	1

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:191210-138Client Reference:5662Report Number:534878Location:KellystownOrder Number:26/B/19Superseded Report:

Results Legend		Customer Sample Bot	TDA	T000	TDOG	TDAA	TDIC	TD04
# ISO17025 accredited. M mCERTS accredited.		Customer Sample Ref.	TP01	TP03	TP06	TP09	TP15	TP31
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	1.00	0.50	0.50	0.50	0.50	1.00
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor repo	rt for	Sample Type	Soil/Solid (S)					
accreditation status. ** % recovery of the surrogate standard to che	ck the	Date Sampled Sample Time	09/12/2019	09/12/2019	09/12/2019	09/12/2019	09/12/2019	09/12/2019
efficiency of the method. The results of indi- compounds within samples aren't corrected		Date Received SDG Ref	10/12/2019 191210-138	10/12/2019 191210-138	10/12/2019 191210-138	10/12/2019 191210-138	10/12/2019 191210-138	10/12/2019 191210-138
recovery (F) Trigger breach confirmed		Lab Sample No.(s)	21332039	21332040	21332041	21332042	21332043	21332044
1-3+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method						
Moisture Content Ratio (% of as	%	PM024	12	11	19	19	17	12
received sample)								
Loss on ignition	<0.7 %	TM018	2.75	0.831	5.75	4.78	3.84	3.81
Mineral oil >C10-C40	<1 mg/kg	TM061	M	35.5	<1 M	M	M <1	M
Millioral on a Gro Gro	i ingrig	1111001		00.0	-1		.,	
Organic Carbon, Total	<0.2 %	TM132		0.847	0.828		0.534	
				M	M		М	
Chromium, Hexavalent	<0.6 mg/kg	TM151		<0.6 #	<0.6 #		<0.6 #	
PCB congener 28	<3 µg/kg	TM168		<3	<3		<3	
1 OB CONGONO 20	· σ μg/ng	1111100		M	M		M	
PCB congener 52	<3 µg/kg	TM168		<3	<3		<3	
	1			М	M		М	
PCB congener 101	<3 µg/kg	TM168		<3	<3		<3	
PCB congener 118	<3 µg/kg	TM168		<3	<3		<3	
T OB congenior T to	· σ μg/ng	1111100		M	M		M	
PCB congener 138	<3 µg/kg	TM168		<3	<3		<3	
				М	M		M	
PCB congener 153	<3 µg/kg	TM168		<3	<3		<3	
PCB congener 180	<3 µg/kg	TM168		<3	<3		<3	
POD congener 100	~5 μg/kg	1101100		M	\		M	
Sum of detected PCB 7	<21 µg/kg	TM168		<21	<21		<21	
Congeners								
Chromium, Trivalent	<0.9 mg/kg	TM181		<0.9	19.7		15.3	
Antimony	<0.6 mg/kg	TM181		<6	2.74		1.55	
Antimony	~0.0 mg/kg	TIVITOT		-0 #	Z.74 #		1.35	
Arsenic	<0.6 mg/kg	TM181		22.9	19.6		12.7	
				M	M		М	
Barium	<0.6 mg/kg	TM181		272	116		129	
Cadmium	<0.02 ma/ka	TM181		1.69	3.08		# 1.7	
Caumum	<0.02 mg/kg	IIVIIOI		1.09 M	3.06 M		1.7 M	
Chromium	<0.9 mg/kg	TM181		<9	19.7		15.3	
				M	М		М	
Copper	<1.4 mg/kg	TM181		39.7	48.3		25.2	
Lead	<0.7 mg/kg	TM181		35.3	34.2		23.1	
Leau	No.7 mg/kg	TIVITOT		33.3 M	34.2 M		23.1 M	
Mercury	<0.14 mg/kg	TM181		<1.4	<0.14		<0.14	
				М	M		М	
Molybdenum	<0.1 mg/kg	TM181		3.06	4.39		2.68	
Nickel	<0.2 mg/kg	TM181		47.2	# 81.5		# 38.2	
	-0.2 mg/kg	IMIOI		47.2 M	01.3 M		30.2 M	
Selenium	<1 mg/kg	TM181		<10	2.14		3.2	
				#	#		#	
Zinc	<1.9 mg/kg	TM181		108	155		134	
Coronene	<200 µg/kg	TM410		<200	<200		<200	
	Zoo pg///g	110		-200	-200		-200	

CERTIFICATE OF ANALYSIS

Client Reference: Order Number: Report Number: Superseded Report: SDG: 191210-138 5662 534878 Kellystown 26/B/19 Location:

PAH by GCMS										
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample Ref.	TP03		TP06		TP15			
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50		0.50		0.50			
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report f	or	Sample Type Date Sampled	Soil/Solid (S) 09/12/2019		Soil/Solid (S) 09/12/2019		Soil/Solid (S) 09/12/2019			
accreditation status. ** % recovery of the surrogate standard to check		Sample Time								
efficiency of the method. The results of individ compounds within samples aren't corrected fo recovery		Date Received SDG Ref	10/12/2019 191210-138		10/12/2019 191210-138		10/12/2019 191210-138			
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	21332040		21332041		21332043			
Component	LOD/Units	Method	45		•			_		
Naphthalene	<9 µg/kg	TM218	<45	М	<9	М	<9	М		
Acenaphthylene	<12 µg/kg	TM218	<60	М	<12	М	<12	М		
Acenaphthene	<8 µg/kg	TM218	<40	М	<8	М	<8	М		
Fluorene	<10 µg/kg	TM218	<50	М	<10	М	<10	М		
Phenanthrene	<15 µg/kg	TM218	112	М	25.9	M	<15	M		
Anthracene	<16 µg/kg	TM218	<80	М	<16	M	<16	M		
Fluoranthene	<17 µg/kg		1160	М	60.6	М	<17	M		
Pyrene	<15 µg/kg		1230	М	55.2	М		М		
Benz(a)anthracene	<14 µg/kg		791	М	36.3	М		М		
Chrysene	<10 µg/kg		647	М	35.4	М		М		
Benzo(b)fluoranthene	<15 µg/kg		1560	М	51.1	M		М		
Benzo(k)fluoranthene	<14 µg/kg		570	М	18.2	M		М		
Benzo(a)pyrene	<15 µg/kg		1150	М	33.3	М		М		
Indeno(1,2,3-cd)pyrene	<18 µg/kg		837	М	22.9	М		M		
Dibenzo(a,h)anthracene	<23 µg/kg		<115	М	<23	М		М		
Benzo(g,h,i)perylene	<24 µg/kg		741 8800	М	<24 339	М	<24 <118	М		
PAH, Total Detected USEPA 16	<118 µg/kg	J IIVIZ 10	0000		339		×110			
								_		
								4		
								_		
						\dashv		+		
						\dashv		+		
								+		
								+		
								+		
						-		+		
								+		
								+		
						\dashv		+		
				-		\dashv		+		
								+		

CERTIFICATE OF ANALYSIS

Client Reference: Order Number: Report Number: Superseded Report: SDG: 191210-138 5662 534878 Kellystown 26/B/19 Location:

TPH CWG (S)							
Results Legend # ISO17025 accredited.		Customer Sample Ref.	TP03	TP06	TP15		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50	0.50	0.50		
tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Sample Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		
accreditation status. ** % recovery of the surrogate standard to check	k the	Date Sampled Sample Time	09/12/2019	09/12/2019	09/12/2019		
efficiency of the method. The results of individ compounds within samples aren't corrected for		Date Received SDG Ref	10/12/2019 191210-138	10/12/2019 191210-138	10/12/2019 191210-138		
recovery (F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	21332040	21332041	21332043		
Component	LOD/Units	Method					
GRO Surrogate % recovery**	%	TM089	74	108	72.2		
Aliphatics >C5-C6	<10 µg/kg	TM089	<10	<10	<10		
Aliphatics >C6-C8	<10 µg/kg	TM089	<10	<10	<10		
Aliphatics >C8-C10	<10 µg/kg	TM089	<10	<10	<10		
Aliphatics >C10-C12	<1000 µg/kç	g TM414	<1000	<1000	<1000		
Aliphatics >C12-C16	<1000 µg/kg	g TM414	<1000	<1000	<1000		
Aliphatics >C16-C21	<1000 μg/kg	g TM414	1010	<1000	<1000		
Aliphatics >C21-C35	<1000 µg/kç	g TM414	3520	1210	<1000		
Aliphatics >C35-C44	<1000 µg/kç	g TM414	3700	<1000	<1000		
Total Aliphatics >C10-C44	<5000 μg/kg	g TM414	8320	<5000	<5000		
Total Aliphatics & Aromatics >C10-C44	<10000 µg/kg	TM414	39700	<10000	<10000		
Aromatics >EC5-EC7	<10 µg/kg	TM089	<10	<10	<10		
Aromatics >EC7-EC8	<10 µg/kg	TM089	<10	<10	<10		
Aromatics >EC8-EC10	<10 µg/kg	TM089	<10	<10	<10		
Aromatics > EC10-EC12	<1000 µg/kg	g TM414	<1000	<1000	<1000		
Aromatics > EC12-EC16	<1000 µg/kg	g TM414	<1000	<1000	<1000		
Aromatics > EC16-EC21	<1000 µg/kç	g TM414	2190	<1000	<1000		
Aromatics > EC21-EC35	<1000 µg/kç	g TM414	21300	3240	1380		
Aromatics >EC35-EC44	<1000 µg/kç	g TM414	7960	<1000	<1000		
Aromatics > EC40-EC44	<1000 µg/kç	g TM414	1790	<1000	<1000		
Total Aromatics > EC10-EC44	<5000 μg/kǫ	g TM414	31400	<5000	<5000		
Total Aliphatics & Aromatics >C5-C44	<10000 µg/kg	TM414	39700	<10000	<10000		
GRO >C5-C6	<20 µg/kg		<20	<20	<20		
GRO >C6-C7	<20 µg/kg	TM089	<20	<20	<20		
GRO >C7-C8	<20 µg/kg		<20	<20	<20		
GRO >C8-C10	<20 µg/kg	TM089	<20	<20	<20		
GRO >C10-C12	<20 µg/kg	TM089	<20	<20	<20		
Total Aliphatics >C5-C10	<50 µg/kg	TM089	<50	<50	<50		
Total Aromatics >EC5-EC10	<50 µg/kg	TM089	<50	<50	<50		
GRO >C5-C10	<20 µg/kg	TM089	<20	<20	<20		

CERTIFICATE OF ANALYSIS

Client Reference: Order Number: Report Number: Superseded Report: SDG: 191210-138 5662 534878 Kellystown 26/B/19 Location:

	MS (S)							
VUC	MS (S) Results Legend		Customer Sample Ref.	TP03	TP06	TP15		
# M	ISO17025 accredited. mCERTS accredited.		,	11 00	11 00	11 15		
aq	Aqueous / settled sample.		Donth (m)	0.50	0.50	0.50		
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Depth (m) Sample Type	0.50 Soil/Solid (S)	0.50 Soil/Solid (S)	0.50 Soil/Solid (S)		
	Subcontracted - refer to subcontractor report accreditation status.	t for	Date Sampled	09/12/2019	09/12/2019	09/12/2019		
**	% recovery of the surrogate standard to chec efficiency of the method. The results of indivi	ck the	Sample Time Date Received	10/12/2019	10/12/2019	10/12/2019		
	compounds within samples aren't corrected to		SDG Ref	191210-138	191210-138	191210-138		
(F)	recovery Trigger breach confirmed		Lab Sample No.(s) AGS Reference	21332040	21332041	21332043		
1-3+§@ Compo	Sample deviation (see appendix)	LOD/Units	AGS Reference Method					
	ofluoromethane**	%	TM116	105	107	102		
Dibroin	ondoromoulano	,,,	1111110	100	101	102		
Toluene	e-d8**	%	TM116	92.8	95.9	97		
4-Brom	ofluorobenzene**	%	TM116	79.9	84.5	84.6		
Methyl	Tertiary Butyl Ether	<10 µg/kg	TM116	<10	<10	<10		
				М	M			
Benzen	e	<9 µg/kg	TM116	<9	<9	<9		
				M	M			
Toluene	e	<7 µg/kg	TM116	<7	<7	<7		
□4h, .0.	77070	∠A N .	T84440	M	M			
Ethylbe	IIZEIIE	<4 µg/kg	TM116	<4 M	<4 M	<4 M		
p/m-Xy	ene	<10 µg/kg	TM116	<10	<10	<10		
P/III²∧yi	iono.	10 µg/kg	1101110	×10 #	\ \ \ \ #			
o-Xylen	e	<10 µg/kg	TM116	<10	<10	<10		
,		פיישיים		M	M	1		
			+					
			+					
			1					
			+					

Waste Landfill

CERTIFICATE OF ANALYSIS

Particle Size <4mm

SDG: 191210-138 Client Reference: 5662 Report Number: 534878 Location: Kellystown Order Number: 26/B/19 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/2 Kellystown **Client Reference Site Location** Mass Sample taken (kg) 0.106 **Natural Moisture Content (%)** 17.4 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 85.2

Case **Landfill Waste Acceptance SDG** 191210-138 Lab Sample Number(s) 21332040 09-Dec-2019 **Sampled Date** Inert Waste TP03 **Customer Sample Ref.** Landfill Depth (m) 0.50

Criteria Limits Stable Non-reactive Hazardous Hazardous Waste

in Non-

Hazardous

Solid Waste Analysis	Result
Total Organic Carbon (%)	0.847
Loss on Ignition (%)	0.831
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	35.5
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

>95%

	Landfill	
3	5	6
-	-	10
-	-	-
1	-	-
500	-	-
-	-	-
-	-	-
-	-	-
-	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	.0:1 eluate (mg/l)	A2 10:1 cond	ⁿ leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg			
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	0.000506	<0.0005	0.00506	<0.005	0.5	2	25	
Barium	0.194	<0.0002	1.94	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.00113	<0.0003	0.0113	< 0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00628	< 0.003	0.0628	<0.03	0.5	10	30	
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00306	<0.001	0.0306	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	7	<2	70	<20	1000	20000	50000	
Total Dissolved Solids	97.3	<10	973	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	

Leach Test Information

Date Prepared	13-Dec-2019
pH (pH Units)	8.68
Conductivity (µS/cm)	116.00
Temperature (°C)	19.30
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

CERTIFICATE OF ANALYSIS

>95%

Particle Size <4mm

SDG: 191210-138 Client Reference: 5662 Report Number: 534878 Location: Kellystown Order Number: 26/B/19 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/2 Client Reference Site Location Kellystown Mass Sample taken (kg) 0.112 **Natural Moisture Content (%)** 25.2 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 79.9

Case **SDG** 191210-138 Lab Sample Number(s) 21332041 09-Dec-2019 **Sampled Date** Inert Waste TP06 **Customer Sample Ref.** Depth (m) 0.50

Landfill Waste Acceptance Criteria Limits

Stable

Non-reactive

Hazardous Waste

in Non-

Landfill

Hazardous

Waste Landfill

Depth (III)	0.00
Solid Waste Analysis	Result
Total Organic Carbon (%)	0.828
Loss on Ignition (%)	5.75
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	<1
PAH Sum of 17 (mg/kg)	-
pH (pH Units)	-
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection	, , , , , , , , , , , , , , , , , , ,			
Arsenic	0.000587	<0.0005	0.00587	<0.005	0.5	2	25	
Barium	0.105	<0.0002	1.05	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	0.00104	<0.001	0.0104	<0.01	0.5	10	70	
Copper	0.00241	<0.0003	0.0241	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	0.00419	<0.003	0.0419	<0.03	0.5	10	30	
Nickel	0.00145	<0.0004	0.0145	<0.004	0.4	10	40	
Lead	0.000431	<0.0002	0.00431	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00536	<0.001	0.0536	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	41.5	<10	415	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	3.72	<3	37.2	<30	500	800	1000	

Leach Test Information

Date Prepared	13-Dec-2019
pH (pH Units)	8.28
Conductivity (µS/cm)	39.90
Temperature (°C)	19.40
Volume Leachant (Litres)	0.878

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

Landfill Waste Acceptance Criteria Limits

Stable

Case

SDG

Lab Sample Number(s)

ANC to pH 4 (mol/kg)

191210-138 5662 SDG: Client Reference: Report Number: 534878 Location: Kellystown Order Number: 26/B/19 Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS REF: BS EN 12457/2 Kellystown **Client Reference Site Location** Mass Sample taken (kg) 0.110 **Natural Moisture Content (%)** 22.2 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 81.8 Particle Size <4mm >95%

191210-138

21332043

d Date ner Sample Ref. m)	09-Dec-2019 TP15 0.50	Inert Waste Landfill	Stable Non-reactive Hazardous Wast in Non- Hazardous
Solid Waste Analysis	Result		Landfill
on (%)	0.534	3	5
%)	3.84	-	-
ng/kg)	-	-	-
(mg/kg)	<0.021	1	-
(g)	<1	500	-
' (mg/kg)	-	-	-
	-	-	-
mol/kg)	-	-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	\$\hbegin{align*} \hbegin{align*} align			•	-
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.0365	<0.0002	0.365	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	0.00101	<0.001	0.0101	<0.01	0.5	10	70
Copper	0.000696	<0.0003	0.00696	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	< 0.003	<0.03	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00212	<0.001	0.0212	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	36	<10	360	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.04	<3	30.4	<30	500	800	1000

Leach Test Information

Date Prepared	13-Dec-2019
pH (pH Units)	8.51
Conductivity (µS/cm)	39.90
Temperature (°C)	1,902.00
Volume Leachant (Litres)	0.880

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

CERTIFICATE OF ANALYSIS

 SDG:
 191210-138
 Client Reference:
 5662
 Report Number:
 534878

 Location:
 Kellystown
 Order Number:
 26/B/19
 Superseded Report:

Table of Results - Appendix

Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM061	Method for the Determination of EPH, Massachusetts Dept. of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS
TM414	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

CERTIFICATE OF ANALYSIS

SDG:191210-138Client Reference:5662Report Number:534878Location:KellystownOrder Number:26/B/19Superseded Report:

Test Completion Dates

Lab Sample No(s)	21332039	21332040	21332041	21332042	21332043	21332044
Customer Sample Ref.	TP01	TP03	TP06	TP09	TP15	TP31
AGS Ref.						
Depth	1.00	0.50	0.50	0.50	0.50	1.00
Туре	Soil/Solid (S)					
Anions by Kone (w)		18-Dec-2019	18-Dec-2019		18-Dec-2019	
CEN 10:1 Leachate (1 Stage)		13-Dec-2019	13-Dec-2019		13-Dec-2019	
CEN Readings		17-Dec-2019	17-Dec-2019		17-Dec-2019	
Chromium III		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Coronene		17-Dec-2019	17-Dec-2019		17-Dec-2019	
Dissolved Metals by ICP-MS		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Dissolved Organic/Inorganic Carbon		19-Dec-2019	19-Dec-2019		18-Dec-2019	
EPH CWG GC (S)		17-Dec-2019	17-Dec-2019		17-Dec-2019	
Fluoride		19-Dec-2019	19-Dec-2019		19-Dec-2019	
GRO by GC-FID (S)		17-Dec-2019	17-Dec-2019		18-Dec-2019	
Hexavalent Chromium (s)		17-Dec-2019	16-Dec-2019		17-Dec-2019	
Loss on Ignition in soils	18-Dec-2019	18-Dec-2019	17-Dec-2019	18-Dec-2019	17-Dec-2019	18-Dec-2019
Mercury Dissolved		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Metals in solid samples by OES		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Mineral Oil		17-Dec-2019	17-Dec-2019		17-Dec-2019	
PAH by GCMS		17-Dec-2019	17-Dec-2019		17-Dec-2019	
PCBs by GCMS		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Phenols by HPLC (W)		18-Dec-2019	18-Dec-2019		18-Dec-2019	
Sample description	12-Dec-2019	12-Dec-2019	12-Dec-2019	12-Dec-2019	12-Dec-2019	12-Dec-2019
Total Dissolved Solids on Leachates		18-Dec-2019	18-Dec-2019		17-Dec-2019	
Total Organic Carbon		18-Dec-2019	18-Dec-2019		18-Dec-2019	
TPH CWG GC (S)		17-Dec-2019	17-Dec-2019		18-Dec-2019	
VOC MS (S)		17-Dec-2019	17-Dec-2019		17-Dec-2019	

CERTIFICATE OF ANALYSIS

 SDG:
 191210-138
 Client Reference:
 5662
 Report Number:
 534878

 Location:
 Kellystown
 Order Number:
 26/B/19
 Superseded Report:

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

17. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

18. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples

19. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name	
Chrysof le	White Asbests	
Amosite	Brown Asbestos	
Cro d dolite	Blue Asbe stos	
Fibrous Act nolite	-	
Fib to us Anthop hyll ite	-	
Fibrous Tremolite	-	

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Standing Committee of Analysts, The Quantification of Asbestos in Soil (2107).

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Waste Classification Report

Job name

5662

Description/Comments

Client: Castlethorn

Engineer: Waterman Moylan

Project

Kellystown

Site

Porterstown, Dublin 15

Related Documents

# Name	Description
1 191210-138.hwol	.hwol file used to create the Job

Waste Stream Template

Rilta Suite NEW

Classified by

Name: Stephen Letch Date: 10 Jan 2020 11:35 GMT Telephone: 353 1 6108 768 Company:

Site Investigations Ltd Carhugar, The Grange 12th Lock Road, Lucan

Dublin

Report

Created by: Stephen Letch

Created date: 10 Jan 2020 11:35 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	TP03-0912190.50	0.50	Non Hazardous		2
2	TP06-0912190.50	0.50	Non Hazardous		5
3	TP15-0912190.50	0.50	Non Hazardous		8

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	11
Appendix B: Rationale for selection of metal species	13
Appendix C: Version	13

Classification of sample: TP03-091219--0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP03-091219--0.50

Sample Depth:

0.50 m

Entry:

Moisture content:

11%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		39.7 mg/kg	l	39.7 mg/kg	0.00397 %		
2	0	confirm TPH has NOT arisen from diesel or petrol		✓					
3	-	antimony { antimony trioxide } 051-005-00-X 215-175-0 1309-64-4		<6 mg/kg	1.197	<7.183 mg/kg	<0.000718 %		<lod< td=""></lod<>
4	-	arsenic { arsenic pentoxide } 033-004-00-6 215-116-9		22.9 mg/kg	1.534	31.262 mg/kg	0.00313 %	√	
5	æ.			272 mg/kg	1.233	298.604 mg/kg	0.0299 %	√	
6	4			1.69 mg/kg	1.855	2.789 mg/kg	0.000279 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		39.7 mg/kg	1.126	39.781 mg/kg	0.00398 %	√	
8	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	35.3 mg/kg		31.417 mg/kg	0.00314 %	√	
9	_	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<1.4 mg/kg	1.353	<1.895 mg/kg	<0.000189 %		<lod< td=""></lod<>
10		molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5		3.06 mg/kg	1.5	4.086 mg/kg	0.000409 %	√	
11		nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		47.2 mg/kg	2.637	110.762 mg/kg	0.0111 %	√	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<10 mg/kg	2.554	<25.536 mg/kg	<0.00255 %		<lod< td=""></lod<>
13	æ.	zinc { zinc sulphate } 030-006-00-9		108 mg/kg	2.469	237.349 mg/kg	0.0237 %	1	

Page 2 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 10 Jan 2020

#		Determinand			CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP						MC/		
14	4	oxide }		{ • chromium(III)		<0.9	mg/kg	1.462	<1.315	mg/kg	<0.000132 %		<lod< td=""></lod<>
15	æ 🍇	chromium in chromiun				<0.6	ma/ka	1.923	<1.154	ma/ka	<0.000115 %		<lod< td=""></lod<>
		•	5-607-8	1333-82-0		0.0	9/9			9,9	0.0001.070		
16		naphthalene 601-052-00-2 202	2-049-5	91-20-3		<0.045	mg/kg		<0.045	mg/kg	<0.0000045 %		<lod< td=""></lod<>
17	0	acenaphthylene		208-96-8		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
40	0	acenaphthene	0-317-1	200-30-0		0.04			0.04		0.00004.0/	Н	
18		·	1-469-6	83-32-9		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
19	0	fluorene 20	1-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20	0	phenanthrene		85-01-8		0.112	mg/kg		0.0997	mg/kg	0.00000997 %	✓	
21	0	anthracene				<0.08	mg/kg		<0.08	mg/kg	<0.000008 %		<lod< td=""></lod<>
22	0	fluoranthene		120-12-7		1.16	mg/kg		1.032	mg/kg	0.000103 %	✓	
23	0	pyrene		206-44-0		1.23	mg/kg		1.095	mg/kg	0.000109 %	√	
24		benzo[a]anthracene	4-927-3	129-00-0									
24		601-033-00-9 200	0-280-6	56-55-3		0.791	mg/kg		0.704	mg/kg	0.0000704 %	✓	
25		chrysene 601-048-00-0 209	5-923-4	218-01-9		0.647	mg/kg		0.576	mg/kg	0.0000576 %	✓	
26		benzo[b]fluoranthene 601-034-00-4 209	5-911-9	205-99-2		1.56	mg/kg		1.388	mg/kg	0.000139 %	√	
07		benzo[k]fluoranthene	5-911-9	200-99-2		0.57			0.507		0.000507.0/		
27		601-036-00-5 205		207-08-9		0.57	mg/kg		0.507	mg/kg	0.0000507 %	✓	
28			0-028-5	50-32-8		1.15	mg/kg		1.023	mg/kg	0.000102 %	✓	
29	0	indeno[123-cd]pyrene		193-39-5		0.837	mg/kg		0.745	mg/kg	0.0000745 %	✓	
30		dibenz[a,h]anthracene				<0.115	mg/kg		<0.115	mg/kg	<0.0000115 %		<lod< td=""></lod<>
			0-181-8	53-70-3									
31	Θ	benzo[ghi]perylene	5-883-8	191-24-2		0.741	mg/kg		0.659	mg/kg	0.0000659 %	✓	
32	0	polychlorobiphenyls; F	РСВ	1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl ether 2-methoxy-2-methylpr	; MTBE;			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			6-653-1	1634-04-4									
34		benzene 601-020-00-8 200	0-753-7	71-43-2		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
35		toluene 601-021-00-3 203	3-625-9	108-88-3		<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< td=""></lod<>
36	0	ethylbenzene		100-41-4		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
37	0	coronene				<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38		o-xylene; [1] p-xylene; 601-022-00-9 20; 20; 20;	; [2] m-xylene; [3]	191-07-1 xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		E10	- 500 . [1]							Total:	0.0841 %	Г	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00397%)

Page 4 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

Classification of sample: TP06-091219--0.50

Non Hazardous Waste
Classified as 17 05 04

Sample details

Sample Name: LoW Code:
TP06-091219--0.50 Chapter:
Sample Depth:
0.50 m Entry:
Moisture content:

from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

1

19%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 19% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	d data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		☑							
3	4	antimony { antimony trioxide } 051-005-00-X		2.74	mg/kg	1.197	2.657	mg/kg	0.000266 %	✓	
4	4	arsenic { arsenic pentoxide } 033-004-00-6 215-116-9 1303-28-2		19.6	mg/kg	1.534	24.352	mg/kg	0.00244 %	✓	
5	æ a	barium { • barium sulphide }		116	mg/kg	1.233	115.899	mg/kg	0.0116 %	√	
6	æ.	cadmium { cadmium sulfate } 048-009-00-9		3.08	mg/kg	1.855	4.627	mg/kg	0.000463 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		48.3	mg/kg	1.126	44.048	mg/kg	0.0044 %	√	
8	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	34.2	mg/kg		27.702	mg/kg	0.00277 %	√	
9	æ å	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.14	mg/kg	1.353	<0.189	mg/kg	<0.0000189 %		<lod< td=""></lod<>
10	_	molybdenum { molybdenum(VI) oxide } 042-001-00-9		4.39	mg/kg	1.5	5.335	mg/kg	0.000533 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		81.5	mg/kg	2.637	174.061	mg/kg	0.0174 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		2.14	mg/kg	2.554	4.426	mg/kg	0.000443 %	✓	
13	æ	zinc { zinc sulphate } 030-006-00-9		155	mg/kg	2.469	310.02	mg/kg	0.031 %	✓	

HazWasteOnline[™] Report created by Stephen Letch on 10 Jan 2020

_	$\overline{}$				$\overline{}$			_				1	
#			Determinand		CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	SIP							MC	
14	4	oxide }	ium(III) compounds	()		19.7	mg/kg	1.462	23.322	mg/kg	0.00233 %	✓	
				1308-38-9	-								
15	4	oxide }	ium(VI) compounds	{ chromium(VI) 1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
16		naphthalene				<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
		acenaphthylene	202-049-5	91-20-3								Н	
17	9		205-917-1	208-96-8	-	<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene				<0.000	mg/kg		~0 00°	malka	<0.0000008 %		<lod< td=""></lod<>
10			201-469-6	83-32-9		<0.008	mg/kg		<0.008	mg/kg	<0.0000008 76		\LOD
19	0	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-					- 0			
20	0	phenanthrene	201-581-5	85-01-8		0.0259	mg/kg		0.021	mg/kg	0.0000021 %	✓	
21	0	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		0.0606	mg/kg		0.0491	mg/kg	0.00000491 %	✓	
23	0	pyrene	204-927-3	129-00-0		0.0552	mg/kg		0.0447	mg/kg	0.00000447 %	✓	
24		benzo[a]anthracene	9			0.0363	ma/ka		0.0294	mg/kg	0.00000294 %	/	
		601-033-00-9	200-280-6	56-55-3		0.0000			0.0201	mg/ng	0.0000020170	*	
25		chrysene 601-048-00-0	205-923-4	218-01-9		0.0354	mg/kg		0.0287	mg/kg	0.00000287 %	✓	
26		benzo[b]fluoranther		205-99-2		0.0511	mg/kg		0.0414	mg/kg	0.00000414 %	✓	
27		benzo[k]fluoranther				0.0182	mg/kg		0.0147	mg/kg	0.00000147 %	✓	
				207-08-9	-								
28		benzo[a]pyrene; be 601-032-00-3		50-32-8		0.0333	mg/kg		0.027	mg/kg	0.0000027 %	✓	
29	-	indeno[123-cd]pyre	ne			0.0229	mg/kg		0.0185	mg/kg	0.00000185 %	√	
		dibenz[a,h]anthrace		193-39-5	\vdash							Н	
30		601-041-00-2	200-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene		191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	_	polychlorobiphenyls		1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X	Ipropane	1634-04-4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34		benzene		71-43-2	T	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
35		toluene				<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< td=""></lod<>
36	0	ethylbenzene		108-88-3		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
_		601-023-00-4 coronene	202-849-4	100-41-4	\vdash							\vdash	
37	9		205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
			ne; [2] m-xylene; [3]	xylene [4]									
38			203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			210-000-7 [4]	1000-20-7 [4]						Total:	0.0748 %	Н	

Page 6 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

HazWasteOnline[™]
Report created by Stephen Letch on 10 Jan 2020

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: TP15-091219--0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

TP15-091219--0.50

Sample Depth:

0.50 m

Entry:

Moisture content:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		✓							
3	æ	antimony { antimony trioxide }		1.55	ma/ka	1.197	1.54	mg/kg	0.000154 %	√	
		051-005-00-X 215-175-0 1309-64-4		1.00	mg/ng	1.107	1.197	mg/kg	0.000154 %	•	
4	ď.	arsenic { arsenic pentoxide }		12.7	ma/ka	1.534	16.169	mg/kg	0.00162 %	√	
		033-004-00-6 215-116-9 1303-28-2		12.7	mg/ng	1.004		mg/kg	0.00102 70	•	
5	æ å	Darian (Darian Calpinac)		129	mg/kg	1.233	132.07	mg/kg	0.0132 %	✓	
-		016-002-00-X 244-214-4 21109-95-5	+								
6	-	The state of the s		1.7	mg/kg	1.855	2.617	mg/kg	0.000262 %	✓	
-		048-009-00-9 233-331-6 10124-36-4	+								
7	4	copper { dicopper oxide; copper (I) oxide }		25.2	mg/kg	1.126	23.549	mg/kg	0.00235 %	1	
		029-002-00-X 215-270-7 1317-39-1	_								
8	4	lead {	1	23.1	mg/kg		19.173	mg/kg	0.00192 %	✓	
		082-001-00-6									
9	ď.	mercury { mercury dichloride }		<0.14	ma/ka	1.353	<0.189	mg/kg	<0.0000189 %		<lod< td=""></lod<>
"	Ī	080-010-00-X 231-299-8 7487-94-7		~ 0.14	ilig/kg	1.555	~ 0.109	mg/kg	<0.0000109 //		LOD
10	ď.	molybdenum { molybdenum(VI) oxide }		2.68	mg/kg	1.5	3.337	mg/kg	0.000334 %	√	
	_	042-001-00-9 215-204-7 1313-27-5		2.00	mg/ng	1.0	0.007	mg/ng	0.000001 70	*	
11	ď	nickel { nickel sulfate }		38.2	ma/ka	2.637	83.599	mg/kg	0.00836 %	√	
L.,		028-009-00-5 232-104-9 7786-81-4		00.2	mg/ng	2.007	00.000	mg/kg	0.00000 70	•	
12	4	cadmium sulphoselenide and those specified elsewhere in this Annex }		3.2	mg/kg	2.554	6.782	mg/kg	0.000678 %	√	
		034-002-00-8	1								
1	4	The state of the s		404	/I -	0.400	2.400			,	
13		030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		134	mg/kg	2.469	274.635	mg/kg	0.0275 %	√	

Page 8 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 10 Jan 2020

щ		Determinand			Note	Hoer enter	1 det-	Conv.	Camperi	oors	Classification	Applied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP No	User entered	d data	Factor	Compound	conc.	value	MC App	Used
14	4	chromium in chrom	ium(III) compounds	chromium(III)	0	15.3	mg/kg	1.462	18.56	mg/kg	0.00186 %	✓	
			215-160-9	1308-38-9									
15	4	oxide }	nium(VI) compounds			<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	-								
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
	0	acenaphthene			T								
18	Ĭ	·	201-469-6	83-32-9	+	<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
	0	fluorene			\top								
19	_		201-695-5	86-73-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
00	0	phenanthrene				-0.045	,,		-0.045		-0.0000045.0/		.1.00
20			201-581-5	85-01-8	1	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24	0	anthracene				<0.016	no a /l.a		<0.016	no ar/lear	<0.0000016.0/		<1.0D
21			204-371-1	120-12-7	1	<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracene		129-00-0	+		·					Н	
24			200-280-6	56-55-3	-	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		chrysene	200-200-0	50-55-5	+							Н	
25			205-923-4	218-01-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[b]fluoranthe		210-01-9	+							Н	
26			205-911-9	205-99-2	-	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[k]fluoranther		203-99-2	+							Н	
27				207-08-9	-	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		201-00-3	+								
28			200-028-5	50-32-8	+	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		indeno[123-cd]pyre											
29	Ĭ		205-893-2	193-39-5	+	<0.018 mg/kg		<0.018 mg/kg		<0.0000018 %		<lod< td=""></lod<>	
-		dibenz[a,h]anthrace		J		0.000			0.000		2 2222222 2/		
30		601-041-00-2	200-181-8	53-70-3	1	<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	,	*		<0.024	me/le-		<0.024	mg/kg	<0.0000024.0/	П	<lod< td=""></lod<>
31			205-883-8	191-24-2		\U.U24	mg/kg		\0.U24	mg/kg	<0.0000024 %		\LUD
32	0	polychlorobiphenyl				<0.021	mg/kg		<0.021	ma/ka	<0.0000021 %		<lod< td=""></lod<>
32		602-039-00-4	215-648-1	1336-36-3		~U.UZ I	mg/kg		VU.UZ 1	mg/kg	-0.0000021 /0		\LUD
33		tert-butyl methyl eth 2-methoxy-2-methy	/lpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	1							Ц	
34		benzene 601-020-00-8	200-753-7	71-43-2		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3		<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< td=""></lod<>
-		ethylbenzene		1.2000	+								
36	,		202-849-4	100-41-4	1	<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
			ne; [2] m-xylene; [3]		+							Н	
38		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
-			K 10-000-7 [4]	1330-20-7 [4]						Total:	0.0594 %	Н	
										iotal.	0.0007 /0	\perp	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 $\,$ Only the metal concentration has been used for classification

Page 10 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating

Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11)

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

CLP index number: 016-002-00-X

Description/Comments:

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 1; Carcinogenic to humans; Lead REACH Consortium

considers some lead compounds Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Aquatic\ Chronic\ 1\ H410\ ,\ Aquatic\ Acute\ 1\ H400\ ,\ Repr.\ 1B\ H360FD\ ,\ Skin\ Sens.\ 1\ H317\ ,\ Resp.\ Sens.\ 1\ H334\ ,$

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

www.hazwasteonline.com NKL4Z-U756B-YAD7K Page 11 of 14

HazWasteOnline[™]
Report created by Stephen Letch on 10 Jan 2020

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3

H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye

Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in

European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

oronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx? SubstanceID=17010& HarmOnly=no? fc=true& lang=ender approximation of the control of t

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2 H371

Page 12 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

barium {barium sulphide}

Chromium VII at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VII at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VII at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VII at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018
HazWasteOnline Classification Engine Version: 2020.8.4129.8241 (08 Jan 2020)

HazWasteOnline Database: 2020.8.4129.8241 (08 Jan 2020)

Report created by Stephen Letch on 10 Jan 2020

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011 **3rd ATP** - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Page 14 of 14 NKL4Z-U756B-YAD7K www.hazwasteonline.com

Appendix 6 Survey Data

Survey Data

Location	Irish Transve	erse Mercator	Elevation	Irish National Grid					
Location	Easting	Easting Northing		Easting	Northing				
		Bore	holes						
BH01	706066.529	737456.859	61.17	306138.783	237431.241				
BH02	706041.742	737508.553	61.27	306113.991	237482.946				
BH03	BH03 705739.563 737540.229		60.73	305811.746	237514.627				
BH04	705975.213	737597.506	60.78	306047.446	237571.918				
		Tria	l Pits						
TP01	706061.699	737437.955	61.21	306133.952	237412.333				
TP02	706091.521	737509.203	61.26	306163.780	237483.596				
TP03	705998.201	737457.656	62.19	306070.441	237432.038				
TP04	706028.269	737511.536	61.25	306100.515	237485.929				
TP05	705949.850	737466.642	61.89	306022.079	237441.025				
TP06	705968.854	737523.898	61.89	306041.087	237498.294				
TP07	705980.829	737566.711	61.11	306053.064	237541.116				
TP08	705961.176	737541.093	61.65	306033.407	237515.492				
TP09	705958.291	737510.084	61.74	306030.522	237484.477				
TP10	705952.670	737577.442	60.65	306024.899	237551.849				
TP11	705931.128	737482.664	61.88	306003.353	237457.051				
TP12	705839.339	737497.150	61.58	305911.544	237471.539				
TP13	705899.897	737517.227	62.50	305972.115	237491.621				
TP14	705910.723	737547.182	61.69	305982.943	237521.583				
TP15	705887.712	737549.128	61.82	305959.927	237523.529				
TP16	705820.103	737528.588	60.96	305892.304	237502.984				
TP17	705784.809	737511.471	60.74	305857.002	237485.863				
TP18	705790.803	737540.254	60.67	305862.997	237514.652				
TP19	705762.342	737532.911	60.95	305834.530	237507.307				
TP20	705715.182	737540.018	60.24	305787.360	237514.416				
TP21	705801.936	737607.409	60.20	305874.132	237581.822				
TP22	705824.790	737570.436	60.22	305896.991	237544.841				
TP23	705840.489	737601.985	60.18	305912.694	237576.397				
TP24	705867.394	737570.820	60.72	305939.605	237545.225				
TP25	705883.358	737579.562	60.54	305955.572	237553.969				
TP26	705914.200	737588.331	60.39	305986.420	237562.740				
TP27	705882.318	737602.217	60.25	305954.532	237576.629				
TP28	705880.619	737637.530	60.36	305952.832	237611.950				
TP29	705913.542	737616.906	60.52	305985.762	237591.322				
TP30	705932.691	737635.516	60.96	306004.915	237609.936				
TP31	705953.624	737617.591	60.90	306025.853	237592.007				
TP32	705936.057	737601.948	60.54	306008.282	237576.361				
TP33	705995.038	737589.348	60.59	306067.276	237563.758				
TP34	706012.125	737637.917	61.19	306084.366	237612.338				

Survey Data

Location	Irish Transve	erse Mercator	Elevation	Irish National Grid					
Location	Easting	Northing	Lievation	Easting	Northing				
TP35	705985.469	737672.796	61.58	306057.704	237647.224				
TP36	706033.157	737679.038	61.86	306105.402	237653.468				
TP37	705999.491	737710.735	61.90	306071.729	237685.172				
TP38	706025.992	737712.636	61.95	306098.235	237687.073				
TP39	706042.152	737711.912	62.04	306114.399	237686.349				
		Soakaw	ay Tests						
SA01	706058.594	737508.084	61.24	306130.846	237482.477				
SA02	705971.434	737575.889	60.77	306043.667	237550.296				
SA03	705939.823	737573.313	60.60	306012.049	237547.719				
SA04	705829.426	737502.223	61.38	305901.629	237476.613				
SA05	705688.700	737541.598	59.78	305760.873	237515.996				
		California Bea	ring Ratio Tes	ts					
CBR01	706018.192	737723.981	61.97	306090.434	237698.421				
CBR02	705991.309	737705.476	61.81	306063.545	237679.911				
CBR03	706033.048	737684.784	61.79	306105.293	237659.215				
CBR04	705970.288	737641.005	61.15	306042.520	237615.426				
CBR05	706002.202	737621.052	60.93	306074.441	237595.469				
CBR06	705969.107	737569.509	61.12	306041.339	237543.915				
CBR07	705992.569	737568.204	60.88	306064.806	237542.610				
CBR08	705916.979	737552.707	61.52	305989.200	237527.109				
CBR09	705919.893	737618.844	60.67	305992.114	237593.260				
CBR10	705861.079	737564.348	60.80	305933.288	237538.752				
CBR11	705853.084	737620.710	60.21	305925.291	237595.126				
CBR12	705811.257	737614.837	60.00	305883.455	237589.252				
CBR13	705780.971	737521.539	60.74	305853.163	237495.933				
CBR14	705713.569	737554.556	60.23	305785.747	237528.957				
CBR15	705778.400	737505.303	60.91	305850.592	237479.694				
CBR16	705893.016	737546.152	61.84	305965.232	237520.552				
CBR17	705838.384	737507.750	61.54	305910.589	237482.142				
CBR18	705944.624	737546.758	61.64	306016.851	237521.159				
CBR19	705936.304	737482.494	61.86	306008.530	237456.881				
CBR20	705958.030	737469.044	62.10	306030.261	237443.428				
CBR21	705974.000	737533.372	61.94	306046.234	237507.770				
CBR22	706073.231	737513.002	61.18	306145.486	237487.396				
CBR23	706119.083	737510.131	61.41	306191.348	237484.525				
CBR24	706107.692	737491.697	61.12	306179.955	237466.087				
CBR25	706089.481	737461.055	61.11	306161.740	237435.438				

